I\ §
JA

/\\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

A
A

A

y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

A\

P

) |

L

OF

) §

¥ \\\

AL

OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL
or—— SOCIETY

The Scattering of Light. I. The Optical Response of a
Finite Molecular Fluid

F. Hynne and R. K. Bullough

Phil. Trans. R. Soc. Lond. A 1984 312, 251-293
doi: 10.1098/rsta.1984.0062

i i i Receive free email alerts when new articles cite this article - sign up in the box
Email alerti ng service at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1984 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;312/1521/251&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/312/1521/251.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

L3
A A

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

a
s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Phil. Trans. R. Soc. Lond. A 312, 251-293 (1984) 251
Printed in Great Britain

THE SCATTERING OF LIGHT. I. THE OPTICAL
RESPONSE OF A FINITE MOLECULAR FLUID

By F. Hyn~NE! aAnD R. K. BuLLoucgH?

' Chemistry Laboratory III, H.C. Orsted Institute, Universitetsparken 5,
DK 2100 Copenhagen @ Denmark
2 Department of Mathematics, University of Manchester Institute of Science and Technology,
P.O. Box 88, Sackville Street, Manchester M60 1QD, U.K.

(Communicated by Sir Sam Edwards, F.R.S. — Received 17 November 1983)

CONTENTS

PAGE
1. INTRODUCTION 251
2. ELECTRODYNAMICAL FOUNDATION 254
3. MACROSCOPIC KERNELS AND INTEGRAL EQUATIONS 259
4. SCREENED PROPAGATORS 266
5. OPTICAL PARAMETERS 273
6. THE OPTICAL EXTINCTION THEOREM 282
7. CONCLUSION 289
REFERENCES 291

We present a classical many-body theory of the optical response of a molecular fluid.
The unified treatment provides mutually consistent expressions for the dielectric
constant, the refractive index, the optical extinction coefficient, and the optical
scattering cross section. The theory treats a finite material system and handles all
surface effects associated with transmitted and scattered light. The complex refractive
index and the scattering cross section will be analysed in two future papers.

1. INTRODUCTION

The present work is the first of a series of three papers reporting a classical many-body theory
of the optics of molecular fluids. The quantum mechanical foundation and the corrections to
the classical theory due to strictly quantal effects will be reported separately.

This series of papers, together with the quantum part still to be published, is the culmination
of a study of optical processes in molecular fluids whose origins go back to before 1962 (Bullough
1962, 1965, 1967, 1968, 1969, 1970; Bullough et al. 1968; Bullough & Hynne 1968; Hynne &
Bullough 1972, 1982; Hynne 1970, 1974, 1975, 1977, 1980, 1983). At that time (1962) a
number of valuable papers on the optical many-body problem had already appeared (Yvon
1936, 1937; Kirkwood 1936; Hoek 1939; Rosenfeld 1951 ; De Boer et al. 1953 ; Fixman 1955;
Buckingham & Pople 19554,6; Mazur & Mandel 1956; Buckingham & Steven 1957;
Mazur 1958; Mead 1958, 1960, 1962 ; Kielich 1960). It was clear, nevertheless that the theory
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252 F. HYNNE AND R. K. BULLOUGH

contained a number of unsurmounted difficulties associated with a necessity of treating a finite
material system.

The interest in molecular optics has continued ever since and has resulted in a large number
of papers of which we can mention only examples (Abrikosov et al. 1965; Frisch & McKenna
1965; Linder & Hoernschemeyer 1967; Tanaka 1968; Mead 1968, 1972; Fulton 1969;
Mountain 1972; Bedeaux & Mazur 1973; Felderhof 1974; Oxtoby & Gelbart 19744, b;
Dharma-wardana 1975, 19764, b; Boots ¢t al. 1975, 1976; Pasmanter et al. 1976; Samson
et al. 19776; Sullivan & Deutch 1976; Keyes & Ladanyi 1978; Logan 1981, 1982; Logan &
Madden 1982; Hoye & Stell 1982; see also the book by Fabelinskii (1968) and the reviews
by Gelbart (1974) and Fromhold (1981)).

But in spite of the striking role played by boundary surfaces of material media in classical
optics, the presence of such surfaces has been largely ignored in these microscopic theories and
never handled on a strictly microscopic level. Even the classical argument of Ewald (1912, 1916)
and Oseen (1915), which deals with only part of the surface effect, is seldom used in molecular
theories of the refractive index or light scattering.

The purpose of the present work is to give a complete and connected account of the many-body
optics of a molecular fluid which solves all essential problems associated with the existence of
a macroscopic surface. We shall refer to the three papers as I, II and III.

On the basis of classical electrodynamics and within a quasistatic approximation we develop
a comprehensive theory of the response of a molecular fluid to incident light. This includes
theories of the parameters that characterize that response, namely the dielectric constant, the
complex refractive index, the extinction coefficient, and the differential and total cross sections
of incoherent scattering.

These theories appear as branches of a single unified and internally consistent theory: various
relations connect the different parts. For example, we prove that the total scattering cross
section per unit volume equals the extinction coeflicient obtained from the imaginary part of
the refractive index, and we derive the Maxwell relation that identifies the dielectric constant
with the square of the refractive index. In fact, there is a remarkable formal parallelism between
the refractive index theory and the light scattering theory: one term at order p of a series
expansion in the refractive index theory corresponds to p—1 terms of similar structure at the
same order in the scattering theory.

The theory is developed in terms of infinite series, and to reach significant results it is necessary
to handle these to all orders. For this purpose we develop an efficient machinery of integral
equations. For example, the consistency proof referred to above is carried through in § 5 without
reference to series representations. Actually, the infinite series are themselves presented in very
concise forms, which make them easy to handle and which make the relation between the
refractive index theory and the light scattering theory particularly transparent. This is
accomplished through definitions that initially appear as mere technical devices, but which will
gain new physical significance through generalization in II.

A characteristic feature of the optical response is its strong dependence on the geometry of
the system, and conventional many-body techniques must fail. A major part of the surface
dependence is handled through two distinct forms of the extinction theorem originally due to
Ewald (1912, 1916) and Oseen (1915). Still, significant surface effects remain and complicate
the theory from a computational point of view; but the theory explains all the surface effects
in physical terms, as we shall see in II and III.

The more important results of the theory exploit the concept of dielectric screening:
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corresponding to the usual ‘photon’ propagator, we introduce a screened photon propagator
describing the average propagating field from a dipole in the presence of the many-body system,
and similar screened propagators are introduced for (roughly) the radiation from a pair of
dipoles to a distant detector.

A formulation in terms of these screened propagators, which is rigorously equivalent to the
original unscreened formulation, is developed in §4. It is through such a screened formulation
we are able to handle the intricate surface effects. The concept of screening is the usual one.
But many-body optics has the unusual feature that one must treat the finite system, and the
consequences of the existence of a bounding surface pervades the whole theory. Thus, in
contradistinction to conventional many-body theory, we must introduce screening for the finite
system, and the screened propagators depend strongly on the geometry. Of course such surface
dependences must be contained in the theory, for they are essential to any proper description
of the refraction and reflection of the scattered light at the surface. Moreover, the microscopic
theory predicts macroscopic multiple light scattering too, and there must be surface dependences
associated with this multiple scattering also. In this paper we develop certain key ideas for
handling these surface effects. The actual solution to the problem of external scattering will
be given in III.

We now indicate the organization of the three papers. In the present paper, we start in §2
with a derivation of the classical equations of molecular optics for the instantaneous response
of a collection of molecules to an external electromagnetic field. In §3 and §4, we proceed to
consider average values, and we develop the machinery of integral equations connecting
macroscopic quantities like the polarization, electromagnetic field, and flux of scattered light.
We obtain explicit expressions for the kernels of these integral equations, which generalize a
macroscopic susceptibility and a scattering cross section. By their nature §3 and §4 may appear
somewhat arid. But the concepts introduced there contain a lot of important physics, which
will materialize as such during the subsequent analysis in II and III.

Sections 5 and 6 solve the response problem for the average polarization and the average
electromagnetic field. We obtain expressions for the parameters of the response, the dielectric
constant, the refractive index, and the total scattering cross section. We exhibit the actual
solution to the response problem, in terms of the induced polarization and fields, for the
particular geometry of a parallel sided slab and for an obliquely incident plane electromagnetic
wave. We demonstrate that the solution agrees completely with macroscopic optics except for
one feature: the microscopic theory predicts a small deviation from continuum behaviour in
the field and polarization at points that lie within a few wavelengths from the surface. In §7
we summarize the result of the paper, and we indicate how some of the concepts introduced
here will come to play important roles in the forthcoming papers II and III.

Paper II will develop the refractive index theory in two forms, one generalizing the
Lorentz—Lorenz relation, the other, a dispersion relation due to Onsager (1936) and Béttcher
(1942). The two related macroscopic models will be analysed and compared. The two-body
corrections to the Lorentz—Lorenz relation will be obtained in closed form and computed
numerically.

Paper III will treat the scattering of an incoming wave in vacuum into an outgoing wave
in vacuum. It will demonstrate the refraction and reflection of scattered light at the surface
and will treat macroscopic multiple light scattering, all handled in microscopic terms. It will
derive the one- and two-body scattering in closed form and compute the depolarization ratio
numerically. It will contain an analysis of the Einstein (1910) light scattering equation.

We now develop the foundation of the theory from classical electrodynamics in §2.

17-2
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A note on notation

We use bold type for vectors and tensors and employ a dyadic notation. Vectors are bold
italic as in « or P, for example, or bold sloping greek as in & or X. Tensors are bold roman
sans serif as in F, or bold upright greek as in A. The scalar product of two vectors k and x
is k*x and is a scalar; the outer product e*e is a dyadic (a second rank tensor); the product
ITI- P is a vector when II is a second rank tensor and is the same vector as P-II only if IT is
a symmetric tensor; the product F-II is a second rank tensor when F and II are.

We also use bold script letters: for example & is a vector. But the tensor F (which is a free
electromagnetic field or ‘ photon’ propagator) is generalized in the paper to a new tensor, which
is a bold script & . It will always be clear that this must be second rank tensor rather than a
vector.

2. ELECTRODYNAMICAL FOUNDATION

In this section we shall derive the classical integral equation of molecular optics and an
expression for the flux of light radiated from a molecular system.

We consider a system of isotropically polarizable, non-polar molecules in an instantaneous
state with molecules at sites x; exposed to an external coherent electromagnetic field E(x, )
of frequency w. A stationary situation is assumed, and we work in terms of time Fourier-
transformed functions. We shall use a quasistatic approximation in which we solve the
electrodynamical problem for a fixed configuration of molecules and subsequently take a
statistical average. The quasistatic approximation means that there is no dependence on the
molecular velocity distribution, and the averaging is effectively over molecular configurations
only. The theory takes no account of momentum transfer between photons and molecules in
microscopic scattering processes, and this excludes a proper treatment of Doppler broadening
and Brillouin scattering for example. On the other hand, we believe the theory provides a valid
theory of the integrated scattering (integrated over the frequency spectrum of the scattered
light). '

We shall work in a dipole approximation in which the state of polarization of the system
is determined by the dipole moments of individual molecules. The total electromagnetic field
at the point x is then the sum of the external field E(x,w) at x and the fields radiated to x
from each dipole, namely

E(x,0) = E(x,0)+ 2 F(x,x;;0) - Pj(w). (2.1)

J

We shall need to change the notation later to distinguish between instantaneous configurations
{,;} of molecules and their averages. Thus (2.1) is rewritten in (2.24) with &' (x, w) written
for &(x,w) and, in (3.1a) &(x,w) is reintroduced as the ensemble average of & (x,w). This
change in notation is introduced after (2.21) and is then used consistently throughout the paper.

While working in terms of (2.1) for the present, the electromagnetic field (or ‘photon’)
propagator F(x,x’;w) gives the electric field at x from a dipole P at x” as F(x,x’; w) P, and
it can be derived classically from this definition (for example, via the Hertz potential) in the

form F(x,x";0) = (VV+k2U) exp (ik,7) /7. (2.2q)

In (2.24a) k, denotes the wavenumber of radiation of frequency  propagating in empty space,
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ky = w/c (¢ is the velocity of light in vacuum); U is the unit tensor and 7 = [x—a’|. Direct
evaluation gives the explicit form of F:

Flx,x";0) = [kg(u—ﬁ)+(l—ik7°)(3ﬁ—U)]M. (2.25)

r? r

It may also be written in terms of spherical Hankel functions of the first kind, £{, as (Rosenfeld

1951) F(x, x5 0) = 3k3 [A$D (ko r) U + 3480 (ky 1) (377 —U)]. (2.2¢)

Here r = x—x’, r = |r|, and # = »/r. (Throughout this paper we shall use a similar notation
to denote the length of a vector and a unit vector in the direction of a given vector.)

At zero frequency, k, = 0, (2.2b) goes into the well known static (or strictly longitudinal)
form (see, for example, Jackson 1975)

F(x,x;0) = r3(37/7 —U). (2.3a)

This is also the part of F that dominates at distances r small compared to ;! for finite
frequencies. For large 7, F(x,x”;0) behaves asymptotically as

F(x,x;0) ~ k2(J —##) exp (iky7) /1, 71— 00, (2.35)
and is transverse.
Since the molecules are assumed non-polar, the dipoles in (2.1) can only arise as a result
of the external field E. Actually, the dipole P;(») of molecule j is induced directly by the total
field & at the site x; of the molecule, and it is given by the linear relation

Pj(w) = a(w) &(x;,w) (2.4)

provided we ignore all nonlinear effects. We shall therefore assume a weak-field limit since we
are specifically interested in linear optics. Classically, the linear relation (2.4) is an assumption.
Indeed it is assumed both linear and local. The quantum theory shows that in the weak field
limit the Kramers—Heisenberg (1925) expression for a(w) is correct for isolated molecules. But
it also shows that there are additional many body contributions to any effective polarizability.
We analyse these in the quantum foundation to be published separately.

Classically, by combining (2.1) and (2.4) we obtain a set of equations for the induced dipole
moments P;:

Pi(0) = a(w) [E(x;, 0) +§j3 F(x;, x5 0) Pj(w)]. (2.5)

The term of the sum (2.5) with j = ¢ is not defined yet. Physically, it represents the field on
a molecule arising from a dipole in the molecule itself. The divergence is part of the intricate
problem of the interaction of an electron with its own radiation field, and is handled by
renormalization in the quantum theory. The problem was first studied classically by Abraham
and Lorentz (e.g. Lorentz 1909) and it is discussed in classical terms in many books (see, for
example, Rosenfeld 1951). The result of the classical analysis is that the self-field contains a
finite part, the radiation reaction, which in the present context may be introduced formally
by defining the propagator F(x, x"; w) at x = &’ as a purely imaginary quantity,

F(x,x;0) = 3k} U. (2.6)

(We show elsewhere how the quantum theory substantiates this view.)
The radiation reaction (2.6) plays a vital role in the present theory. It is essential for the
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256 F. HYNNE AND R. K. BULLOUGH

internal consistency of the theory and it can be generalized to include intermolecular
self-interactions related to the macroscopic reaction field introduced by Onsager (1936). It is
possible to carry the effect of radiation reaction through the theory concealed in a polarizability.
In (2.5), the term j = ¢ contains P;(w), and it may be combined with the term on the left side
to yield an equation of the same form as (2.5). In the resulting equation the sum excludes the
term j = ¢ and the polarizability a(w) is replaced by a complex polarizability

a(w)

Y(w) = TR a(e) (2.7)

Although we shall have occasion to use the form (2.7), it proves to be advantageous in the
general development to keep the radiation reaction explicitly as a self-interaction through the
definition (2.6).

We have now obtained the equations that determine the polarization (equation (2.5)) and
the field (equation (2.1) with (2.5)) induced in response to the external field E. For the treatment
of light scattering we shall also need the flux of energy radiated in a given direction.

From the asymptotic form (2.35) we find at a distant point R, where E vanishes,

&R, 0) =X k2 (U—R,R,) P,exp (iky R))/R,, (2.8)
J
in which R; = R—x;. Let V denote the region containing the molecular system (for any

configuration) and choose the origin of the coordinate system inside V. If R > max x; we may
write (recall that x; denotes |x;| for example)

R, = R—R-x;+0(x;/R) x;. (2.9)
Since we are ultimately interested in the limit R+ 00 we may neglect terms of relative order
O(x;/R) for all j. Defining k = k, R we may then write (2.8) as
&(R,w) = R exp (ik,R) k2(U —léié) 2 Pyexp (—ik-x;). (2.10)
j

From a homogeneous Maxwell equation we find the magnetic field at R. The Poynting vector
then gives the intensity and, upon multiplication by R?, the flux per unit solid angle in the
direction of k, I(k), which may be written

2
I(k) =%Z.P;"'S(xi,xj;k)'l’j. (2.11)
%]

A superscript asterisk denotes complex conjugation, and we have introduced a tensor kernel
S(x,x’; k) by the definition

S(x,x';k) = k2 (U —KkE) exp [ik- (x—«')]. (2.124)
For the case where the radiation is analysed by a polarizer of direction v, the resulting flux
is given by (2.11) with S(x, x”; k) replaced by

S(x,x"; k,v) = kvvexp[ik: (x—x")]. (2.125)

Plainly, we obtain S(x, x”; k) from S(x, x"; k, ») by summing over two orthogonal polarization
vectors v, and v,, perpendicular to k,

S(x,x";k) = S(x,x";k,v;). (2.13)

j=1,2
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It is therefore convenient to use the same symbol S for both quantities and distinguish them
by the presence or absence of an argument ». When the symbol S appears without arguments
below, either interpretation can be adopted at will because the light scattering theory in terms
of S is formally independent of whether the scattering is analysed for polarization or not.

The quantity S is closely related to the propagator F, and because of this propagator
character we shall call it a ‘radiator’ (or more precisely a ‘dipole radiator’ corresponding to
the dipole photon propagator F). We now show that the polarization-independent form (2.12a)
is connected with the imaginary part of F by the Bohr—Peierls—Placzek type relation (compare
with Sakurai (1967), for example)

fS(x, '3 k) dQ = 4mk; Im {F(x, x'; )}, (2.14)

in which the integration is to be taken over all directions of k. This relation will come to play
a decisive part in the unified theory as a connection between the refractive index theory and
the scattering theory: we show later that the theory is rigorously internally consistent in that
the total scattering (integrated over all directions) agrees with the extinction calculated from
the imaginary part of the refractive index.

To prove (2.14) we resolve the tensor in (2.124) into irreducible parts

U—kk =2U—1(3kk—U). (2.15)

We evaluate the integral in (2.14) in polar coordinates with polar axis along » = x —x’. The
exponential is constant under integrations over the azimuthal angle:

1

JS(x, x';k)dQ2 = 2n k%J exp (ik-r) [BU F(z) —3(3#F# —U) P,(2)] dz (2.16)
1

with z = k-#. By substituting the Rayleigh spherical wave expansion for the plane wave

(Abramowitz & Stegun 1964)

exp (ik-r) = § i"(2n+1)4,(ky7) P,(2), (2.17)

n=0

into (2.16) and using the orthogonality of the Legendre polynomials P, we find
fS(x, x'; k) dQ = an k3[2j,(kor) U +1j,(k,7r) (377 —U)]. (2.18)

Equation (2.14) now follows by comparing (2.18) with the form (2.2¢) of F, by using the

relation
KD (2) = j,u(2) +iy,(2) (2.19)

between the spherical Hankel function of the first kind and order n and the corresponding
spherical Bessel and Neumann functions j, (z) and y,,(z), which are real for z real. We note that
(2.14) is valid even for x = &', and that it is consistent with the definition (2.6).

The flux of radiation analysed for polarization may be simplified because the radiator (2.125)
can be written as a dyadic product

S(x,x"; k,v) = k2e*(x; k,v) e(x"; k,v) (2.204)

in which e(x;k,v) =vexp (ik x). (2.205)
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258 F. HYNNE AND R. K. BULLOUGH

In terms of e(x; k,v) the flux of radiation takes the form
Ik.v) = kg . P2
(k,2) = (X e(x;; k, ) Pyl (2.21)
j

Tosimplify the notation when we come to deal with averaged quantities as well asinstantaneous
ones, it is convenient to reformulate the results of this section in terms of distributions of
molecules and dipoles, which formally are continuous. At the same time we shall change the
notation slightly by introducing a superscript ‘in’ for quantities depending on the instantaneous
configuration of molecules, whereas, henceforth, the same symbol without superscript will
denote the corresponding averaged quantity.

We introduce the instantaneous density of molecules and the instantaneous polarization as

' (x) = X 0(x—ax}") (2.22)

and P (x,0) = X P"(w) §(x—xi™) (2.23)
J

for a given configuration xi". We may then write (2.1) as

& (x,0) = E(x,w) +f F(x,x";0) P (x' 0)dx’, (2.24)
%

where the integration extends over the region V containing the molecules (&% (x, ) here is
the same as & (x, w) of (2.1)). Similarly (2.5) becomes

Pi%(x, w) = n'(x) a(w) [E(x, ) +f F(x,x";0) PP (x' 0)dx’], (2.25)
14
and the definition (2.6) is now written
JF(x, x';0)0(x—x')dx’ = k3 U. (2.26)

Equation (2.25) is the fundamental equation of classical molecular optics.
In terms of densities the flux of radiation /" (k) takes the form

2
fngk)y = % f f P (x,0)*-S(x,x"; k) PP (', 0) da da’, (2.274)
and /'"(k,v) for radiation analysed for polarization takes the same form with S(x,x’; k)

replaced by S(x,x”; k,v). Alternatively, we may use the form (2.21) to get

4 2
(k) = CSIC—; fve(x;k, v) P (x,0)dx| . (2.27b)

The molecular response relation (2.4) may be written most simply in terms of densities as
P (x, w) = n'?(x) a(w) &M (x, ). (2.28)

It will prove convenient, however, to write it in a more elaborate form,

P (x 0 f I (x, x"; 0) - 17 (27, 0) dx’ (2.29)
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in terms of a tensor kernel defined as
I (x,x"; 0) = 1'% (x) a(w) §(x—x") U. (2.30)

We shall also need a ‘polarization propagator’ JI®(x, x"; w), related to IT'", which gives the
polarization P® in response to the external field E:

Pt (x, w) = f JI (%, x"; 0) - E(xy 0) dx’. (2.31)
14
Equation (2.25) shows that JII® satisfies the integral equation

J’Iin(x’x/;w) — Hin(x,x';w) +f f Hin(x’x//;w) .F(x//,x//t;w) .J‘[in(xlll’x/;w) dx” dx”
vV JV

(2.32)
since E is arbitrary.
In the following section we shall work from (2.24), (2.27), and (2.29) and treat the problem
of finding expressions for the average polarization, P, the average field, &, and the average
flux of radiation, I.

3. MACROSCOPIC KERNELS AND INTEGRAL EQUATIONS

Macroscopic electrodynamical quantities are average values. They are obtained by averaging
over microstates compatible with a given macroscopic state. We assume that the molecules are
contained in a region V of volume |V|, and that the temperature is given together with either
the number of molecules or the chemical potential. Conceptually, the case of a fixed number
of molecules is most appropriate to the physical situation of a finite material system surrounded
by empty space, and the averages are therefore taken according to the canonical probability
distribution. For practical reasons we shall employ the grand canonical ensemble in some
specific cases, however. Since we are dealing with fluctuation phenomena in the light scattering
theory, the choice of statistical ensemble is not obviously immaterial; we shall comment on the
problem in III, when the need for the grand ensemble arises.

Within linear response theory the field probes the state of the unperturbed fluid. It is therefore
appropriate to use the statistical properties of the unperturbed fluid in equilibrium. We shall
assume that the temperature is sufficiently low so that we may neglect thermal electronic
excitations of the molecules.

We consider average values of Pi%, &% and I'". These average fields are mutually related
by integral expressions involving kernels that are average values. It is these ‘macroscopic
kernels’ that we are really interested in. For they are related directly to usual macroscopic
parameters (dielectric constants, refractive indices, and differential scattering cross sections)
that determine the response of the system according to macroscopic optics.

The purpose of this section is to obtain explicit series representations for the macroscopic
kernels and to derive a number of relations between them that will prove useful in later stages
of the theory.

From the set of coupled equations (2.24), (2.29) in Pi" and &™ we obtain a set of coupled
equations for the averaged polarization P and the averaged electric field &. Equation (2.24)
yields immediately

E(x,0) = E(x,w) +f F(x,x;0) P(x’,0)dx’. (3.1a)
14
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260 F. HYNNE AND R. K. BULLOUGH

When we take the average value of (2.29) we do not get an expression in P and & because
the right side contains a product of functions depending on the instantaneous configuration.
However, there must exist a relation between P and & of the form

Plx,0) = fv Alx,x";0) & (x',w) dx’, (3.1b)

and we shall now find the kernel A(x, x"; ) and show that it involves an infinite sequence of
terms, which we can describe as “microscopic multiple scattering’ processes. All the macroscopic
kernels have series expressions of this character and the work of this section is concerned to
derive these and to obtain the different sets of intermolecular correlation functions that are
associated with each of them.

First we derive an integral equation for A. To do this note first that (3.14) and (3.1 ) combine
in

& (x,0) = E(x,0) +J;/ fv Flx,x;0) Alx',x";0) & (x",w) dx’ dx”. (3.2)

But there is already a complication in (3.1 a) since the integrand is singular at x” = x. We define
the integral in the spirit of the theory of generalized functions by

f Flx,x;0) P(x’,0)dx” = lim F(x,x;0) P(x',0)dx’—in P(x,w). (3.3)
| 4 v>0J V—ov

The integral on the right side is a principal value integral obtained by excluding a vanishingly
small spherical region about x from the domain of integration. Formally, (3.3) is equivalent
to defining

lim | F(x,x;0)dx’ =—4n U, (3.4)

v=>0J v

and this seems natural since the left side must be an isotropic second rank tensor while

1
| — |

%Tr{VV }U =—inUd(x—x). (3.5)
However, this means that (3.1a) and (3.3) together form the definition of the average electric
field &(x,w). We shall find that it has all the properties of the usual macroscopic
Maxwell electric field inside or outside a dielectric medium.

It is consistent with (2.24) and (2.29) to define a configurational dependent kernel
A? (%, x"; w) such that

Pin(x, w) =f At (x,x";0) E(x', 0) dx’. (3.6)
4
Then (3.14) means that
Alx,x";0) = (A (%, x7;0) ), (3.7)

where angular brackets denote an ensemble average.
To find Ai® and A we derive integral equations for them. To reach these we eliminate E
between equations (2.24) and (3.14) to obtain

E(x,0) = &(x,0) +f F(x,x";0) [P (x',0)— P(x',0)] d«’. (3.8)
%
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This result is substituted in (2.29), and (3.14) and (3.6) for P and P" are used to express the
result solely in terms of & and the kernels. Since & must be arbitrary, because E is, we reach
the integral equation for A",

A =1+ [ Mg (AR— Ay dv,dx, (3.9

We have adopted a subscript notation for positional variables; thus A;; means A(x,, x,; w) for
example.

Equation (3.14) shows that the kernel A is a (generalized) macroscopic susceptibility. To
derive a series expression for it we first relate it to the polarization propagator JI. By comparing
(3.6) and (2.31) and expressing E in terms of & by means of (3.2) we find

A = JIilla_JvV fv TG Fyy Agydw, dxy (3.10)

SO A10=J110—f f J,, Fyyt Ay, dx, dx,. (3.11)
vJy

This is the required integral equation for A itself but it depends on JI.
Series expressions for JII" and JI can be obtained by straightforward iteration of (2.32):

» (3.12)

e o]
in — pin +1 . ing,in in
JIn = ping Ud, + X a? fv...fVFm Fos ... Fyoni®ny® ... ngtdx, ... dx
p-1

»

J,, =naUd,,+ X (na)p“J f FioFoy. . F0Gray  poda,...dx,,. (3.13)
p=1 | 4 v

Here nj® = n'"(x;) is the instantaneous density of molecules (2.22) (and observe ; is a variable
of integration, not a molecular site i), &, = 8(x; —x,) is a delta function, and

Glas.. g = W Kn'"(x,) n (%) ... ”in(xq)> (3.14)

q

is a g-particle correlation function generalized to contain self-correlations (see, for example, Stell
1964)
G, =1,
G = g12+n710yy, (3.15)
Glag = ras 7 (815805 + 025 831+ 031 815) + 1720158555

the terms g are the usual correlation functions (Hill 1956). Subsequently we call G,
aswell as 9,3, = n9G,,3 , distribution functions to distinguish them from other correlation
functions. Note that the first term in the sum in (3.13) (that involving p = 1) is not integrated.

This is to be understood similarly in all equations of the same structure we derive later.
The iterated solution of (3.11) is

Ay = ‘Hm_fvaﬂm "Fyy - JI;p dx, dxy

+ffff.JIH-F23-JI34~F45'J150dx2dx3dx4dx5+‘... (3.16)
VJVJVIV


http://rsta.royalsocietypublishing.org/

JA

o \

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY L\

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

262 F. HYNNE AND R. K. BULLOUGH

If the series (3.13) for JI is inserted and the terms in powers of na are collected together at
each order we readily find

e o]
Ap=naUd  + 2 (na)p“J J Fio Fos... FooHigs  podx, ... dx,, (3.17)
p=1 v v
and this is the series for A that involves an infinite series of microscopic multiple scattering
processes. Later we shall introduce a diagrammatic notation for successive multiple scattering
terms, but this is not necessary here.

In the series (3.17) the correlation functions H are defined by

q .
H123...q = j;o (_ 1)! % G123...il G(z'l+1) gt G(ij+1)...q> (3-18‘1)
(i} = (g oy 1S5 <o <i<q, g2 (3.185)

In (3.184) the sum is taken over all different sets of integers (3.185). For j = O there is only
the empty set, and the corresponding term is G g5 .

We have now determined the kernel A and hence the relation (3.16) between P and &. This
relation is evidently the appropriate one for obtaining a susceptibility or a dielectric constant
e. But it is not suited for obtaining the refractive index, m, despite the simple macroscopic
relation € = m? that connects the two quantities. The reason is that while the susceptibility can
be defined as a ratio of amplitudes of P and &, the refractive index is defined as a ratio of
wavenumbers of fields in the medium and in empty space. The refractive index theory must
therefore be developed separately, and the macroscopic relation € = m? will then emerge as
a result of the microscopic theory.

In the argument involving the extinction theorem, which we shall give in §§5, 6 to obtain
a refractive index it would be inconvenient to have the field & inside an integral as in (3.15).
We therefore now introduce an alternative relation between P and &,

Plx,w) = no(w) & (x, w) +I I'x,x";0) P(x’,w) dx’ (3.19)
14

to replace (3.16) in the refractive index theory. To derive this equation and obtain I' we note
that P satisfies an equation of the form

P(x,w) = no(w) E(x, w) +f Cx,x";0) P(x',w) dx’, (3.20)

|4

in which the auxilliary kernel € is still to be determined. Equations (3.14), (3.19) and (3.20)
show that I is simply related to C:

I'x,x";0) = C(x,x"; w) —na(w) F(x,x"; ). (3.21)

On the other hand, equations (3.20) and the average of (2.31) show that C is related to JI

as
J =11+ VC12'J120 dx,. (3.22)

This result can be rewritten

Ch= HiO_JV C,, I dx, (3.23)
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in which the dimensionless kernel
J(x,x";0) = (no) "I (x,x";0) —(x,5"; 0)] (3.24)

is given by the expansion (3.13) multiplied by (na) ~1, with the first term omitted. The iterative
solution of (3.23), namely

C,=J,— JV JI, - JI, dx, + fv fv J I, I, dx, dae, + . (3.25)
then immediately provides the series expansion of I':

=2 (na)”f J Fio Foyo. . FgCras podx, ... dxy, (3.26)
p=1 |4 | 4

in which the correlation functions C are defined as

g1
Cl23...q = }go( 1)! {Z 123.. il...iz Gij...q, (3.27)
i ={intp -0y}, 1< <ip<...<y<gq, ¢23.
The first few functions H and C are
Hy,=G6G,—1,
Hyy = G123_G12_023+ 1, (3.28)
H1234 = 01234_0123_0234_012 Ga4+612+023+034_ 1
and
Cp = Glz_ 1,
Ciros = Glza_Glz Gzas (3.29)
Ciass = Graga— Gia3 Ggy — Gy Gogy + G,y Gy Gy
The kernels A and I are related by
Alx, 2" ;0) = (2, x"; 0) + f [(x,x";0) Alx",x"; w) dx”, (3.30)
v

as can be seen by substituting (3.14) into (3.19); & is considered arbitrary. The relation (3.30)
connects the dielectric constant theory and the refractive index theory, as we shall see in §5.

We now consider scattering. From (2.27) we obtain the energy flux of incoherent scattering
per unit solid angle in the direction of k,

k2
= f f ((AP™(x,0))*-S(x,a'; k,v) AP (%, w)>dada’.  (3.31)
This is the average value of /'"(k,v) minus the spatially coherent scattering obtained by

replacing Pin(x,w) by P(x,®) in (2.27) (AP denotes Pin— P).
We express J(k,v) as a quadratic form in &:

J(k,v) =”‘2f f E*(x,0) 6(x, &' k,v) E(x', w) dx da’, (3.32)
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in which we have used (3.14) and (3.6) and introduced the scattering kernels

0’(x,x’;k,v)=f J (AN (%, x";0))T-S(x”, x"; k,v) - AAI? (2", x"; 0) ) dx” dx”.
vJv
(3.33a)

o(x,x k)= X o(x,x;k,v)), (3.330)

j=1,2
with AA™® = Ai*—A. The superscript T in the expression for 6(x,x’; k,v) is used to denote a
hermitian conjugate and the same notation will be used for any tensor kernel throughout these

papers. Thus, for any tensor kernel T(x,x"), (7;;(x,x"))! = T}(x’,x) with * the complex
conjugate.
The form (3.33b) applies to scattering not analysed for polarization. The kernels ¢ of

(3.334, b) are closely related to the susceptibility kernel A; 6(x, x”; k, v) has the series expansion

[e]

6= 3 (na)pﬂjv JV &(Fyy Foy .. Fool Hypy poda, ... da,, (3.34)

p=1

where we have introduced the notation

s F F

- (3.35)

* . .
(@—1)g “q(g+1) 7 (g+1)(g+2) -

»
S{F,,"F,;...F,} = 21 F-F) .. F
q=

In (3.35) index p+ 1 is to be interpreted as index 0. Thus, &{F, F,;} = S, F,,+F},S,,, for
example.

The structure of the series expansion (3.34) is evidently correct, and we need only establish
the form of the correlation functions. We work from (3.33) and substitute the series for AAI®
and AAI". The series representation of A" is (3.17) with the functions H replaced by
configurational dependent functions H® determined by the recurrence relation

in _ ,in in _ — pin in
H123...p =n"(Hy;.. H23...p) = n"AHG;

» (3.36)

. p’
with HIn = »i®. This is obtained from the integral equation (3.9). Similarly, the hermitian
conjugate kernel AI"f has an expansion given by the complex conjugate of (3.17) with the
functions H replaced by configurational dependent functions

Hilgg...(p—l)p = Hipn(p—l)...321‘ (337)

(The tensor kernel F is symmetrical, and the functions H" are real.) Hence, the functions H ™1
satisfy the recurrence relation

| Hirzlg p= AH}%... (p-1) ”;;n: (3.38)
with Hint = pln,

We now determine the combination of correlation functions appearing in the ¢’th term at

order p+ 1 of the expansion of (3.33). It is
<AH¥1T q AI']%rql+1)...po> = <Hi11.1.T.qAH%2+1) p0>
= <AH¥1T (g—1) n;nAH%rqlﬂ) ...p0> = <A[{11nlr (g-1) H?;‘ p0> = <AH¥1T (g-1) AH};..p0>
=...= <(”i1n_”)TAHizg...po> = Hl23...p0' (3.39)

This completes the proof of (3.34).
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Notice that the result (3.39) is independent of ¢: all terms of (3.34) at a given order in na
contain the same correlation function, an H function (3.18). Moreover, this correlation function
is identical with the one in the term at the same order of the series expansion (3.17) of A. This
result suggests that the scattering kernel ¢ is related to the susceptibility kernel A. We shall
demonstrate what this means in physical terms once we have noted some properties of the H
functions.

It is easy to verify that the recurrence relation (3.36) has indeed the averaged solution (3.18).
We may formally write

Higy.p = miM (" = <np®) (n = md?) .. (= Cml), (3.40)

in terms of a linear averaging operator ¢, which acts on everything to the right. To obtain
H,,; ..., explicitly, expand the product (3.40) and complete the angular brackets by adding
the proper number of brackets ) to the right of each term.

We note that H,,; , is invariant under reversal of the order of the variables, so A is
symmetrical as a tensor kernel (i.e. in the variables and tensor indices combined). It therefore
defines a self-adjoint integral operator as do F, ITi%, and JI®, but not Ai®. This means that
the hermitian conjugate of A equals its complex conjugate, whereas IT'" is hermitian.

It is useful to generalize the notation (3.35) by treating &€ as a linear operator. In this way
it may be taken outside the integrations and the summation in (3.34), and this relation may
then be written very compactly,

6(x,x"; k,v) = S{A(x,x";0)}. (3.41)

The image under & of a term without F tensors vanishes by definition. It is important in (3.41)
that radiation reaction is retained as a result of self-correlations in A: a self-correlation
d(x;—x;,,) produces a scattering term in S;; in the term ¢ = j of the sum (3.35).

The formal relation (3.41) implies the physically important relation

fc(x, x';k)dQ = 4ank; Im{A(x,x"; w)}, (3.42)

in which the integration is over all directions of k. To prove (3.42) we need a generalization
of the Bohr—Peierls—Placzek relation (2.14)

vZ:v S{F,, Fyy...F )} dQ = dn k' Im{F,-F,, ... F_}. (3.43)
The sum in (3.43) is taken over two orthogonal polarization vectors orthogonal to k. Equation
(3.43) is verified by direct evaluation of the left side by using (2.14) and (3.35):

D
an kgt X (F,—iFy,) ... F) (Fpo+iF7,). (3.44)

. q(q+l)-c-
g=1

We have denoted the real and imaginary parts of F by F’ and F” respectively. The sum in (3.44)
contains j terms with j imaginary parts in given positions s,, s,, ..., s;, since any of the factors
F” can originate in S, ,,,. The term with ¢ = s, has a factor (—i)""! /=" = (—1)""1¥~1, but
otherwise the j terms are equal. The sum of the j terms therefore vanishes ifj is even and equals
the first term of the sum (with ¢ = s,) if j is odd. So we get precisely one term with imaginary
parts in positions s,, $,, ..., 5; (for j odd); it appears with sign (—1)}¢~D, and evidently, the
sum in (3.44) contains all distributions {s}. This proves (3.43).


http://rsta.royalsocietypublishing.org/

S0
! B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

266 F. HYNNE AND R. K. BULLOUGH

We now complete the proof of (3.42) by summing (3.41) over polarizations and integrating
over all directions of k: the relation (3.42) then follows from (3.43) by using the linearity of
the operator @ and of the imaginary part operator. The result (3.42) itself evidently has the
form of a Bohr—Peierls—Placzek relation. It provides a link between the theory of scattering
(through 6) and the theory of the complex refractive index (through Im{A}). It is an exact
result and demonstrates the internal consistency of the theory.

This completes the structural ground work of the ensemble averaged theory. But to handle
the intricate surface effects with physical insight we need still more powerful machinery. This
we develop in §4.

4. SCREENED PROPAGATORS

The susceptibility kernel A and the scattering kernel ¢ both depend on the geometry of the
region V, as scrutiny of (3.17) and (3.34) will show. Whereas A depends rather weakly on V,
the dependence is quite strong for ¢ this fact expresses a surface dependence of the scattering,
which we shall come to exhibit as refraction and reflection of the scattered light at the surface
of the sample. It is therefore imperative to develop the kernels so as to isolate the surface
dependence.

The processes that transform E into &, P or J may be described as a series of microscopic
multiple scattering processes, as we have already said. These involve alternating polarizations
of molecules by fields and propagation of fields emitted from induced dipoles. In these processes,
fields propagate in empty space and molecules are polarized as isolated molecules.

Itis natural to ask if there exists a more economical description in terms of composite processes
such as propagation of electromagnetic fields in the material medium. Such composite processes
must themselves be describable in terms of microscopic multiple scattering processes taking
place in vacuum. It is such a formulation we shall give in this section; it will provide the tools
for the solution of the problem of the surface dependence of A and o.

Consider again the molecular system in a fixed configuration x}", and choose for the present
argument the field from an oscillatory dipole P(w) at x” as the external field E(x, ) in (2.24).
The dipole is not considered part of the molecular system; it is a dipole probe and admittedly
somewhat unphysical. But it is used here merely to justify the introduction of certain
propagators in the theory. These propagators, as well as the entire theory, are well defined and
totally independent of dipole probes, and we can forget about these probes as soon as they have
motivated the introduction of the propagators.

So consider (2.24) and let E(x,w) = F(x,x"; ) - P(w) temporarily. The total field from the
dipole P(w) in the presence of all the molecules is then the &1 of (2.24). We express this field
as F"(x,x";w) P(w), which defines the propagator &, From (2.24) we then find the
equation for &1,
g'-iﬂ;:':lo"'f J F,. T3 73 dx, dx, (4.1)
by use of (2.29). ner '

To find an integral equation for &, the average of &1, we first note that ™ satisfies
the equation

Fh= 10+JV JV F.. Al F,dx, dxg, (4.2)

since this evidently has a solution and any solution of it satisfies (4.1). This can be seen by
substituting (3.9) for Ai" in (4.2) and by using (4.2) itself, and the average of it. Since F®
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can be assumed to be uniquely determined by (4.1), it is uniquely determined by (4.2) as well,
and by taking the average value we then obtain the integral equation for &, the screened photon
propagator.
Fo = F10+fv JV Fio Ay 5y dwy duvy. (4.3)

Now to derive an integral equation for A" in terms of & we first note the relations
JV Ay Fodx, = fV I F i dx, = IV JI3 - Fao docsy,. (4.4)

The first one follows by multiplying (3.9) by & from the right, integrating, and using (4.2)
and (4.3). The second relation is verified by noting that the two sides satisfy the same linear
homogeneous integral equation: compare (4.1) and (2.32) after multiplication by ITi" from
the left, and by F from the right, respectively, followed by integration.

We rewrite (2.32) as

Jin =11 fv fV JIi3- F,, - TLi% dx, dx, (4.5)
and use (4.4) to rewrite it still further as

JIn = ITin + fV fV AL Z. - TIR dx, dx,. (4.6)
By using (4.4) again we may rewrite (3.10) as

Al = JIill(}—JV fv Al Fo - Ay, dx, dx,. (4.7)
Substitution of (4.6) for JI' in (4.7) then yields the desired integral equation for Ai?:

Al = l‘[}%-l—fv fv A F. - (I8 — A,,) dx, dx,. (4.8)

We also note the average of (4.7),

A, =, —JV fv Ay Fy Ay, dx, dx, (4.9)

which we shall use in II.
The averaged solution to the nonlinear integral equations (4.8) has the form

dx,...dx . (4.10)

- p0 P

Ay =nalUdy,+ X (”“)pﬂf f o T o Fpg Vs
p=1 v v

We shall call a formulation of the theory in terms of & the ‘screened’ theory, and we refer
to (4.10) as the ‘screened series’ in contradistinction to the corresponding unscreened
formulaticn presented in §3. The functions Y, . can be expressed explicitly in terms of
generalized Ursell functions (Hynne 1970, 1975),

Yios. . p= 2 11 U (4.114a)

ke¥, Cex

In (4.11a) the sum is taken over the class %), of all ‘connected’ partitions « of the ordered index
set [p] =[1, 2,3, ..., p] into subsets C, and the product is over all subsets C of «, while U,

18 Vol. 312. A
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is the generalized Ursell function with variables indicated by C. Mentally we use a diagrammatic
notation to define a connected partition of [p]. The indices 1, 2, 3, ..., p are represented by
consecutive vertices of a regular polygon of p sides. A partition of [p] is represented by a
collection of polygons, each having the representative points of a set of the partition as vertices.
By definition a partition is connected if the representative diagram is connected as a point set.
The first few Y functions are

Yo = Uty
Nos = Ulaw,
Yiosa = Usgga+ Uy Usy,
Visaas = Urasas + Usg Usgs + Usy Usgs + Uy Upyy+ Uy Uy + Uy Uy,

(4.115)

The generalized Ursell functions are given in terms of the generalized distribution functions
G by the recurrence relation (Lebowitz & Percus 1963 ; Stell 1964)

Gros..p = %Ql;[i/,U ) (4.12q)

in which the sum is taken over all partitions ¢ of the set [p] and the product is over all subsets
Q of Y. The first few generalized Ursell functions are

Uy =6,—1,
Usss = Gra3— G1y— Gy — Gy +2, (4.125)
Uizas = Graga— -+ -

(The one-body correlation functions of the theory are defined as G, = H; = U, = ¥, = 1). The
Ursell functions are useful in the theory because they have the cluster property of vanishing
when any pair of points (molecules) is well separated.

The first functions ¥ can be derived directly from (4.8). The kernel A!® is given by the
expansion (4.10) with the functions ¥,4 ,, replaced by configuration dependent functions

Yin,  po with averages ¥ ,5...,,. The first functions Y™™ are then easily generated through a
recurrence relation obtained from (4.8). For the general result (4.114) we must refer to Hynne
(1975).

The propagator & is itself given by a series expansion in terms of F, obtained from
the iterated solution of (4.1):

F,= X (na)p“lf J Fio Fy.. . FpGyy  pdx,...dx,, (4.13)
p=1 |4 |4

in which the first term is F,, by definition. If the series (4.13) is substituted for & in (4.10)
and the resulting series is rearranged as a power series in na we get the unscreened solution
(3.17) back, of course: the screened formulation is rigorously equivalent to the unscreened one,
and we shall call it the rigorously screened theory when we need to distinguish it from
approximations to be introduced in later papers of this series. Actually, the substitution of (4.13)
in (4.10) generates a classification of terms of the unscreened series for A, which identifies the
surface-dependent terms. Still, the main virtue of a screened formulation (in terms of &) is
that it aids an interpretation of the results of the theory in terms of macroscopic concepts.
We now consider scattering. The field at a distant point R from a dipole probe P(w) at
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xis F*(R,x;w)  P(w), and the component in the direction v of a polarization analyser is then
v Fn-P or
R Yexp (iky R) K2 & (x5 k,v) - P(w), (4.14)

where &% (x; k,v) is obtained from (4.1) or (4.2) with the asymptotic form (2.35) as either of
the two explicit expressions

en(x; k,v) =e(x;k,v)+J f e(x';k,v) I (&', x”;0)  FB(x",x;0) da’ dx”, (4.15a)
vJv

or ¢&M(x;k,v) =e(x;k,v)+f J e(x';k,v) A(x',x";0) F (2", x;0) dx’ dx”.  (4.15b)
vJv

Thus, the flux per unit solid angle of radiation from a collection of dipole probes at sites x;
embedded in the molecular system in configuration xi" is given by (2.11) with S(x, x’; k,v)
replaced by

LM (x,x' s k,v) = kZe"* (x; k,v) e%(x'; k,v); (4.16)

and the average flux is given by the same expression with the average of &%, namely
S (x,x'; k,v) = k2{e™*(x; k,v) e (x'; k,v)), (4.174)

which we call a screened dipole radiator. For radiation not analysed for polarization it takes
the form
L (x,x';k) = X FL(x,x";k,v;), v,v,=0. (4.17b)
i=1,2
The average field at R from a dipole probe at x is given by (4.14) with &"(x; k,v) replaced

by its average value, e(ac; k,v) = (e(x; K, v)D. (4.18)

Explicitly, ¢ is
g(x;k,v) = e(x;k,v)+] J ex;k,v) Ax,x";0) F(x',x;0)dx’ dx”, (4.19)
viJv

the average of (4.1558). We shall refer to ¢ as the ‘weight field’. It will play an important role
when we come to analyse the behaviour of the scattered light at the surface of the medium.
The reason for the designation ‘weight field” will then become clear.

The flux calculated from the average field differs from the average flux: it is governed by
radiators

S (x,x"; k,v) = kie*(x; k,v) e(x'; k,v), (4.204)
S (x,x k)= X L(x,x";k,v;). (4.205)
j=1,2

Thus the radiators & and & are distinct: from the expression (4.156) and the definitions
(4.174a) and (4.20a) we see that they are related by

y10=y10+f j F 1y 0oy Ty dwy day, (4.21)
vJv

where we have introduced the scattering kernel 6 by the definition (3.33a). This relation applies
as well to radiation not analysed for polarization.

The average flux of scattered light differs from the flux of the average scattered field by
including the incoherent scattering of the average field propagating through the molecular

18-2
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270 F. HYNNE AND R. K. BULLOUGH

system. This difference is described by the term in ¢ in (4.21). The relation (4.21) will come
to play a central role in the development of macroscopic multiple scattering, which we will
present in III.

We have now introduced all the screened propagators we shall need, %, &, and &, and
from now on we shall work with these as objects defined, and well defined, in terms of the
fundamental propagators F and §. We understand their significance in terms of dipole probes,
but there are actually no such probes in the theory.

Physically, the scattering theory is most naturally formulated in terms of the weight field
¢ (or through the dyadic combination &, which we shall call the simple screened radiator).
But a screened formulation in terms of % and % is formally simpler than one in terms of &
and &’ because & is the natural counterpart of . We now show that & is related to %
in the same way as 8 to F. We first note the formal relation

F (%, %' k,v) = S{F (x,x";w)}. (4.22)

The right side of (4.22) is defined from the expression (4.13) for & by applying the operator
& to the integrand of each term by using the definition (3.35).
For the left side of (4.22) we use the definition (4.17) with (4.15a) and its adjoint, namely

8in*(x;k,v) =e*(x,k’v)+f J‘ g?in*(x’x/;w).Hin*(x/’x//;w),e*(x//;k’v) dx’dx”.
VJV
(4.23)

For the #' and & 1"* in (4.154) and (4.22) we substitute the iterated solution of (4.1) to
obtain an explicit series representation of %, which may be simplified by use of (2.30). The
correlation functions that arise are evidently the distribution functions (3.14). In all terms we

get a dyadic product of e* and e, which together with the factor £2 gives the kernel § by the
definition (2.20a). By collecting the terms according to the total number of propagators F*,
F, and 8, and by comparing the result with the right side, the identity (4.22) then follows.
Note that (4.22) may be viewed as a series representation of &, in terms of F and §, in
condensed form.

A screened expansion of the scattering kernel @ (in terms of & and ) is now easily derived.
We first note a straightforward generalization of (4.22)

p—1

V= 3 FEFE P

@{22 %3 o q(g+1) *

- Ty (4.24)

This result (together with the linearity of the operator &) allows us to interpret the relation
(3.41) between the scattering kernel and the susceptibility kernel in terms of screened
expansions. This means that we can take the screened expansion of ¢ directly from (4.10) to
get

0
6,,= X (no)P+! f f S(F, Ty ... T} Vigy. oty ... d, (4.25)
=1 VJV

in which the factor in & is a shorthand notation for the sum defined through (4.24). We also
note that the Bohr—Peierls—Placzek relation between & and &

j&”(x, x' k)dQ = 4n k' Im{F (x,x"; w)} (4.26)

is an immediate consequence of equations (4.22) and (3.43) with the expansion (4.13) of .
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The expansion (4.25) with (4.24) is particularly simple in that all terms of the same order
p contain the same correlation function, ¥, independently of the index ¢ (which determines
the position of the radiator & in the string of propagators ). This form lends itself to a
comparison between the refractive index theory and the scattering theory.

Unfortunately, we must ultimately express the scattered flux in terms of the weight field &
(or of the simple radiator &) because & describes essentially the scattered wave in the medium
and its behaviour at the surface. This can be achieved through an iterated solution of (4.21)
for & in terms of 9, and this solution generates an expansion of the scattering in terms of
macroscopic multiple scattering to all orders, which we shall derive in III. This multiple scattering
expansion builds directly on the solution (4.25) and becomes expressed in terms of the ¥
functions.

Still, we shall also need more explicit expressions for the scattering in terms of the weight
field together with either & or F. These we derive now. We use the factorization (2.204) of
S to write the scattered flux (3.334) as

2
> (4.27)

We wish to obtain a similar expression in terms of the weight field &. We first note that (4.19)
is equivalent to the integral equation in &

ck4

J(k,v) = e(x;k,v) AN (x,x"; k,v) & (x',w) dx dx’

e(x; k,v) =e(x;k,v)+f f e(x' k,v) Ax', x";0) F(x”,x;0) dx’ dx”. (4.28)
vy

This can be seen by comparing the iterated solution of (4.28) with the iterated solution of (4.3)
substituted in (4.19).
We now obtain the scattering in terms of & as

J(k,v ”k4< 2> (4.29)

by substituting the expression for e in terms of g, obtained from (4.28), into (4.27). The kernel
A" is defined by

f f ) AR (%, X 0) (%', w) dx dx’

Ain — AAilr(;_fV fv A, Foy  AARR dx, dx,. (4.30)

We shall derive equations for A" in terms of & and prove that the tensor kernel Ai® is
symmetrical. From the fact that F and A are symmetrical it follows that & satisfies the real
adjoint of (4.3), namely
F = Fw"‘}v fV Py Agy By da,y das. (4.31)

By moving the integral in (4.31) to the left side of the equation and substituting the resulting
expression for F into (4.30) we find by use of (4.30) itself that

AAD = Aln +JV fv Ay Fy Al dx, dix,. (4.32)
Comparison of (4.30) and (4.32) demonstrates the identity

f F,,  AAIR dw, = f Z,,-Alndx,. (4.33)
14 14
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272 F. HYNNE AND R. K. BULLOUGH
By use of (4.33) in (3.9) we then find
A =1+ | M7, A ds,dx, (434
and subtraction of (4.32) from (4.34) yields
Al = Hil’(l)_Am"'f f (IR — A ) - oy Al dix, dixy. (4.35)
vJy

This is a linear integral equation in A™ with IT'® — A as a source. The iterated solution of (4.35)
together with the fact that IT'", A, and & are each symmetrical then shows that A" is a
symmetrical kernel.

We close this section by considering the development of the scattering (4.29) in terms of F.
We may write

J(k,v) = p§ Jyk0); I, (k) = pz_:i T pa(Ks0), (4.364)
=2 q=

cky
Jpq(ks ) =—°(na)pf dxl...f dx (& Fpy .. . F ) 8%
81 v v

F &,) K%, . (4.360)

X (8441 Figrn o - Fo-np

By use of (3.39), (4.29), and (4.30) we find the functions K{g) ,, explicitly in terms of the H
functions

p—1
( = —
Kl%..,p - H123...p j=§q:’+1 H(q+1)‘..jH1...q(j+1)...p
g—1 p-1

91
_j§1 H(j+1) ...q H1 . j(g+1) .. p + j§1 Jean H(j+1) . q H(q+1) ol le...j(l+1) D (4-37)

with H, = 1. The first few K functions are
K@ =H,=U,,
KDy = K9y = Hypy—Hy3 = Uy,
K(112)34 = H1234_H134—H23 Hyy = Uyt Uis Usy+ Uy, (4.38)
Ky = Hygay— Hyps— Higa + Hyy = Usyyy + Uy Upy + Uy Uy,

K%)M = H1234_H124_H23 Hyy = Uypgu+ Uy Uy + U134-

Recall that the unscreened or screened expressions contain H,,g , or Y,3 , respectively at
order p independently of ¢ (the position of the dipole radiator). In contrast, the form of the
function K{g, , depends on ¢, and it is not possible to express the scattering (4.36) compactly
in terms of an operator like €.

We have now derived explicit expressions for the susceptibility kernel A and the scattering
kernel ¢ in the form of screened and unscreened series expansions. We have also established
a number of relations between them. These results have been mathematical ones, each of which
is formally exact. Because they are available we can now return to the physical problems they
have been designed to describe. The analysis of these physical problems becomes that much
simpler if we can draw at will on the relations established in this section and the preceding
one.
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5. OPTICAL PARAMETERS

In this section we obtain expressions for wave vector and frequency dependent dielectric
constants, for the refractive index, for the total scattering cross section and for the extinction
coefficient, and we derive certain relations between these optical parameters.

We first look at (3.154) and regard it as a relation determined by the kernel (3.17); thus P
is a functional of &, with & essentially arbitrary. We choose for V' a parallel-sided box, and
Fourier resolve P(x, w) and & (x, ) in V in terms of a set of orthogonal running vector waves.
We find the equivalent relation

Ph,w) =X A(h,h;0) &R, w) (5.1)
Y

with the Fourier coefficients defined by
P(h,w) =f P(x,w)exp (—ih-x) dx, (5.2a)
14
A(h, R ;0) = |V|_1f f A(x,x ;) exp (1h' - 2" —ih - x) dx dx’
vy

=|V|? JV dxexp[i(h'—h)  x] ,fv A(x,x";w) exp [ih' - (x'—x)] dx’ (5.20)

and similarly for & (x, ). Note that in general A(h, h’;w) depends on h and A’ separately.

The kernel A(x, x’; ) can be written as a sum of two terms, a short-range function of x —x’,
which we call the local part of A, and a correction term. ‘Short-range’ characterizes a function
that is negligible when |x—x’| > [, where [ is a typical intermolecular correlation length. The
non-local correction term is either not short range or it depends on x and x’ separately. We
assume for the present that the correction term can be neglected to a good approximation. We
return to this question in §6 when we look at the x and x” dependence of A(x,x;w) again.
Until then we also assume that the kernel I'(x,”; w) is local in the sense just assumed for
Ax,x";0).

If A is local then the final form of (5.26) shows that A(h, h’; ) is diagonal to a very good
approximation, so

A(h,h';0) =~ A(h,0) 8, 4. (5.3)

Here 6, , is a Kronecker delta and A(h,®) is defined by

A(h,0) = A(h,h;0) = IVI“IJ f A(x, x";w) exp [ih- (' —x)] da da’. (5.4)
vy
In the approximation (5.3), the relation (5.1) takes the simple form
P(h,0) = A(h,0) & (h, ), (5.5)

Since P is the average polarization, and & is given by equation (3.1a) and interpreted as the
average electric field in the medium for xeV, (5.5) exhibits A(h,w) as the dielectric
susceptibility. In the particular case where the system is excited by light, A and w are connected
by a dispersion relation, as we show below. But in the general case A and w are both free variables
and A(h, ») determines kA and w dependent dielectric constants. For short correlation lengths
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A(h, w) depends only on one direction, that of &, and it can then be split into longitudinal and

transverse parts:
A(h,0) = Ay(h,0) hh+ A, (h,w) (U—hkk). (5.6)

This form depends on the approximate local property of A, for it neglects any dependence of
A(h,w) on the geometry and it assumes the symmetry

A(h,0) = A™(—h,») = A"(h,») (5.7)

in which T denotes transposition of the tensor (cf. Bullough (1968), the footnote to p. 420).
The first part of (5.7) follows rigorously from the symmetry of A(x,x"; ) as a tensor kernel.
To prove the second equality of (5.7) we assume that for the local part of A the integrations
in each term of the series (3.17) for A can effectively be extended to all space. Since the
integrands in (3.17) are invariant under reflections in the point 3(x+«”), it then follows that
the local part of A is symmetrical in the variables x and x” and in the tensor indices separately.
The last equality of (5.7) then follows when the non-local part of A is neglected.

If &(h,w) is split into longitudinal and transverse parts, (5.5) splits into two independent
equations that naturally define longitudinal and transverse dielectric constants, ¢; and €, by

[e) L(hyw) —1]/41 = A, (h,). (5.8)

We now turn to a solution of the set of equations (3.1). The field E is a coherent field satisfying
the time Fourier transformed wave equation,

(VE+EDH E(x,0) =0, ky=w/c (5.9)

and the transversality condition
V-E(x,0) =0. (5.10)

The objective is to find an expression for the refractive index. We base the definition of the
refractive index on the average polarization: we suppose P(x,w) satisfies the (Fourier
transformed) wave equation

[VE4m?(w) k2] P(x,0) =0, x€V, (5.11)

and then, by definition, m(w) is the refractive index of the fluid.
We choose to solve the equations for P in the form (3.14), (3.19), and we rewrite & as
(cf. Rosenfeld 1951)

E(x,0) = E(x,0) — 41 P(x, w) +J Flx,x";0) P(x’,0) dx’ (5.12q)
V—ov

= E(x,0)+ (VV+KU)- j G(la— ') P(«’, ) da’. (5.125)
14

In integrals over v, or V' —uv, a limit v >0 as the radius of the small sphere goes to zero is always
understood. In (5.125)
G(r) = exp (ikg7) /7 (5.13a)
and satisfies the equation
(V24+£2) G(lx— ') = —4nd(x—x’). (5.13b)

The step from (5.12a) to (5.125) involves an interchange of the order of differentiation and
integration; and since the region of integration depends on x through v, a surface integral
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evaluated over the surface of v arises as the operator is taken outside (see also Rosenfeld (1951)).
The contribution of this exactly cancels the term arising from the definition of the integral over
vin (3.4). Notice now that the principal value prescription on the integral in (5.12a) becomes
unnecessary in (5.125) because the singularity from G is integrable. Accordingly, V—uv is
replaced by V as the region of integration. This form (5.124) for & means that & cannot depend
on v, while it also agrees with macroscopic electrodynamics written in terms of the Hertz vector.
Our definition of & nevertheless remains as it was introduced at (3.14), in which the integral
is interpreted by (3.3). The physical justification for this is implicit in what follows.
By use of the Green theorem and (5.11) and (5.13) we may rewrite (5.125) as

4t ky®
m?—1

&(x,0) = E(x,0)+ Z(x; P) + (VV+EU) - P(x, ) (5.14)

in which

Z(x;P) = (m*— 1) k2(VV+ k2 U) - f A4 (VG 0)] P, 0)
v

—[V'P(x',0)] G(r,w)}. (5.15)

Here r = |x —’|, V’ denotes differentiation with respect to #” and 0V denotes the surface of V.
We now reduce the set of equations (3.14), (3.19) to a single equation by substituting the
result (5.14) for & in (3.19) to get

P(x, ) = naE(x,0) +naX(x; P) +(—m‘:—’i—”f‘-;—kg (VV+k2U) - P(x, )
+fVF(x,x’;a)) ‘P(x’,w)dx’. (5.16)
Fourier resolution of the last term yields
fvl"(x, x';0) Plx',0)dx’ ~ |V} Ehj exp (ih'x) L' (h,0) P(h,w), (5.17)
in which we have used
[Vt ijVF(x, x';w) exp (ih’ &’ —ih-x) dxedx’ >~ T'(h,0) 8, 4, (5.184q)
I'h,w) = |V|—1JV JVI‘(x, x';w) exp [ih- (x'—x)] dx’, (5.18b)

by arguments similar to those leading to (5.4).

Because of (5.11) only terms with 4 = |h| = mk, contribute to the sum in (5.17). The last
term of (5.16) therefore satisfies the wave equation (5.11) and so does the term in P(x, w). On
the other hand the first two terms in (5.16) satisfy the wave equation (5.9). Consequently the
equation (5.16) must split into two equations, each of which must be satisfied separately. The
one satisfying (5.9) is

Ex,0w)+Z(x;P) =0, xeV, (5.19)

and this is the optical extinction theorem due to Ewald (1912, 1916) and Oseen (1915).
It expresses the extinction of the free field satisfying (5.9) at all points inside V.
The second equation from (5.16) applies to terms of wavenumber mk,. It can be split still
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further because the localization assumption (5.184) means that there is no coupling between
longitudinal and transverse parts of P. Consequently

['(h,w) = I'y(h,w) bh+ T, (h,0) (U —hh), (5.20)

and the resulting equations are homogeneous in P and P,. Then they imply the two dispersion
relations (cf. Bullough 1968)
1+4nna(w) = I'j(mky, w) (5.21)

m?—1 _ no
47 1T (mky, )

and (5.22)
Actually, P must be split into longitudinal and transverse parts satisfying two distinct wave
equations of the form (5.11). These define longitudinal and transverse refractive indices, which
are then determined by each of the two dispersion relations (5.21), (5.22). We concentrate on
the transverse dispersion relation (5.22) and refer to Bullough (1968, 1970) for a discussion
of the longitudinal relation. We continue to denote the solution to (5.22) by m(w).

Equation (3.30) lets us relate the refractive index and the dielectric constant. Fourier
transformation over the region ¥V yields a relation for the Fourier coefficients that can be split
into separate equations for longitudinal and transverse parts. These can be solved for 4 ,:

ne(w)
Ay (b)) = —h 5.23
II,J.( ) 1_F||,J_(h9 (1)) ( )
This result immediately gives the relations
A"(mko, w) = — (4“) -1 (5.24)
(m*—1)/4n = A, (mky, w) = |V|1 TrJ f A(x,x"; 0) 'i(x’,x) dxdx’. (5.25)
vJv
The notation in (5.25) is that i(x’, x) denotes either of the two forms
i(x’,x; mk,, u) = uuexp [imk," (x'—x)], (5.264a)
T(x/, 2y mky) = J(U —E, K,) exp [imk, (' —x)]. (5.26)

Then Tr means the trace of the tensor, % is a unit vector orthogonal to the wave vector m(w) k,),
and |k,| = w/c; otherwise u and k, have arbitrary directions.

We have introduced the kernels T to emphasize a formal similarity with kernels related to
the screened radiator &, which we shall consider in III. The two forms (5.264, b) correspond
to polarized and unpolarized waves in the medium, respectively, but in (5.25) it makes no
difference whether (5.264) or (5.264) is used. In (5.26), m is really to be understood as Re (m),
and the same applies to the m that appears in the arguments of I and A in (5.22) and (5.25).

Equation (5.24) implies &, = —4mn P|. Because (5.15) means that V-Z(x;P) = 0 we can
expect that Py does not couple to the external field E through (5.19) so that & and P, are
free: this is already discussed elsewhere (Bullough 1968, 1970). On the other hand P, and
& | are also solutions of homogeneous equations but are certainly not free: they are fixed by
the constraint of the optical extinction theorem (5.19), and we show in §6 what this means
for the particular geometry chosen for V there. Certainly it means that P, is excited by light
that satisfies the free field equation (5.9) with wavenumber k,, while |h| in (5.5) takes on the
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value mk,. This then defines a frequency dependent dielectric constant €(w), and comparison
of (5.8) with (5.25) shows that

e(w) = €,(m(w) ky, w) = m*(w). (5.27)

The relation (5.27) agrees with macroscopic electrodynamics and so expresses consistency
between the dielectric constant theory based on (5.5) and the refractive index theory based
on (5.11). Thus it justifies our introduction of & (x, w) and our interpretation of it as a Maxwell
type electric field for points x inside V. However, the definition (3.1a) of &(x, ) involves the
further definitions, which are (3.3) and (3.4), and since these definitions may seem arbitrary
we must understand the reasons for them more completely.

The key point is that the physics does not depend on the definitions (3.3) or (3.4). To see
this, first note that the dielectric constant €, (%, w) in (5.8) depends on both (3.14) and (3.3)
in so far as (5.5) relates P(h,w) to the field &(h,w). (Its relation to the external field E(x, w)
i1s more complicated as we show in §6.) Against this we have defined the observable, the
refractive index, in terms of the wave vector of the average polarization, and this is entirely
independent of any physical interpretation of the right side of (3.1a), or of the definitions
(3.3) or (3.4), as we now demonstrate.

For the moment we go back to (3.19), the origin of (5.16). In this equation we take the
integral expression for & (namely (3.14)) together with the first term arising from substituting
the expansion (3.26) into (3.19). Together these quantities contribute

nocf F(x,x";0) P(x',w) dx’+nocf F(x,x";0) P(x’,0) Cy(x,x") dx’
14 14

= nocf F(x,x";0) P(x',0) g,(x,x") dx’ + 21k} P(x,w). (5.28)
14

The two-body correlation function C,(x, x”) is given by (3.29), (3.15). We see that the two terms
combine into a convergent integral once the self-interaction has been evaluated by the rule of
(2.26). The integral of the right side of (5.28) is convergent where x’ = x, since g,(x,x”) >0
for x” —x, and no special interpretation of the integral is needed.

On the other hand, in the derivation of (3.19) we have implicitly made the step backwards
from the right of (5.28) to the left. This has meant replacing g,(x, x") by its asymptotic value
for large |x —«’|, namely 1; and this number 1 gives the contribution of distant dipoles through
the first integral of the left side of (5.28). This must now be corrected for the effect of close
dipoles and this is done through the second integral, which contains C,(x,x’) in which the 1
is now subtracted off again. These formal steps introduce what was the Lorentz local field
correction via the second integral and, as we shall see, the Lorentz field term (41/3) P(x,w)
from distant dipoles via the first integral.

Note first of all, however, that both the integrands in the left side of (5.28) are singular even
though the integrand in the right side is non-singular. Thus the effects of the two singularities
necessary cancel exactly and so they must cancel exactly in (3.19) and (5.16). This means that
as far as the refractive index theory goes we can make any interpretation whatsoever of the
two singularities.

The natural choice is to make a principal value interpretation of both integrals by abstracting
a small sphere » about x in the regions of integration of both integrals. This choice is consistent
with the physical fact that g,(x,x") >0 as ¥’ —x, since the reference molecule at x excludes
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the possibility of a second molecule being there. For almost all x in V, g, — 1 is then spherically
symmetric about x since, despite the boundary to V, g, 1 rapidly for all such x. It then follows
from the form of F that the contribution of the term in g,—1 in the second integral in the left
of (5.28) is small; and it is really this that motivates the principle value integral interpretation.
From this we see that the usual Lorentz term, 3nP(x, ), arising from distant dipoles, appears
now when the integral operator is taken outside the integral, as in the step from (5.124) to
(5.12b). These mathematical steps thus implement the Lorentz’s original physical intuition and
do not appeal to (3.4).

However, in actual practice we have adopted a point of view that does involve (3.4): we
chose to conceal a Lorentz term $nP(x, w) in each of the integrals by including the small spheres
vin the regions of integration. The principal value interpretation can be regained by abstracting
both small spheres: then, in the interpretation of (3.4), terms F4nP(x,w) arise from the first
and second integrals, respectively, and mutually cancel. However, if the small spheres v are
retained the term —2nP(x,w) from the first integral can be used to cancel the Lorentz term
from the conditionally convergent part as it arises in the step from (5.124) to (5.125).
Consequently the net effect is to transfer the nP(x,w) term arising from distant dipoles to
the second integeral of the left side of (5.28), now to be interpreted through the definition (3.4).

We now see that the way the Lorentz term appears to emerge in the refractive index theory
through the action of (3.4) is actually misleading. But formulated in this fashion the theory
offers several manipulative advantages. For it is certainly necessary to isolate the ‘1’ and make
up the first integral on the left side of (5.28) to apply the argument involving the optical
extinction theorem of §6, which leads to the result (5.19). By making the interpretation (3.4)
we can then draw the connection between the dielectric constant and refractive index theories.

Furthermore, the delta functions in the correlation functions (the self-correlations) cannot
act in the principal value integral, but by including the integration over v these self-correlations
can be handled together with interparticle correlations, a feature that greatly simplifies the
calculation. The ‘book-keeping’ for the Lorentz terms is also simplified : this is desirable because
although there is only one such term in I"| (mk,, w) of (5.22) (as we show below), the kernel
A | (mky, w) of (5.25) contains an infinity of such terms. Finally, the definition (3.4) suggests an
analogous interpretation in the screened theory (in terms of %) developed in I and this has
far reaching physical consequences.

All these features suggest that we use the rule (3.4) in the refractive index theory. In using
it we must simply bear in mind that the Lorentz terms arise for sound physical reasons, and
that the small sphere interpretation is in principle unnecessary for the refractive index theory,
although it is essential for the dielectric constant theory.

We still have to check that the remaining terms of (3.19), which arise from the expansion
(3.26) are well defined without any special interpretation other than (2.26). However, this can
be seen immediately from the form of the higher correlation functions (3.27): all propagators
F in I are covered by distribution functions &, which, apart from the self-correlations, vanish
as pairs of points approach each other. Consequently there is a Lorentz contribution only from
the first term of the expansion of I', and we can write the Fourier integral (5.185) as

I'(h,0) =T°h, o)+ U, (5.29)

where I'(h, ) is a series in which all integrals are convergent without the interpretation (3.4).
We now use the result (5.29) to bring the dispersion relation (5.22) and (5.25) to the
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conventional form exhibiting the Lorentz field correction. We split (5.29) into longitudinal and
transverse parts and substitute into (5.23) to get

_ ne(w)
Ay 1 (hw) = [itna(o)— I (ha) (5.304)
This may also be transformed to
A (ho) ne(w) (5.305)

L+én A, (hw) 1-T9 (ho)

in which I'{ | (h, w) are the longitudinal and transverse parts. Equation (5.25) in particular then

yields (m2—1)( 3 )_ nu(w) (651)
an J\m*+2) 11— (mk,, )’ ‘

which is the generalized Lorentz—Lorenz relation. Plainly the §m nae U term in (5.29) determines
the characteristic Lorentz form on the left side. As we have seen this is exactly the effect of distant
dipoles, as Lorentz described, and its appearance does not depend on the definition (3.4).

The result (5.31) contains an infinite series in the denominator. Expansion yields a formal
series in na for the Lorentz—Lorenz ratio. However, the coefficients depend explicitly on » and
(weakly) on m. Comparisons with (5.29) and (5.30) show that the result is simply

in which A9 (mk,, @) denotes the unscreened series A, (mk,, w) with, however, all contributions
from small spheres arising through the definition (3.4) now simply omitted. In practice the series
(5.32) can be obtained by redefining the integral (3.4) as zero, or alternatively by placing V
by ¥V —u after all delta functions (representing self-correlations) have been integrated. We shall
develop the result (5.32) further in II. Note in passing that if the left side is replaced by
(m?—1) /4w, simply the definition (3.4) for the integrals must be retained: in effect the 4n na
term in the denominator (5.304a) gets developed in the expansion and this indicates very well
the mathematical validity of (3.4) within generalized function theory.

We now proceed to derive an expression for the total scattering cross section. From the
Fourier resolution

E(x,w) = |V % & (h,w) exp (ih" x), (5.33)

the quadratic form (3.32) in & is obtained as a sum over modes

k2
J(k,v) = EQEO 2 E*(h,w) o(h,h';k,v) &R, w), (5.34)
h b
in which
olh,h;k,v) = |V|_1f J o(x,x" ; k,v)exp (ih'*x'—ih x) dx dx’. (5.35)
vJv

The terms in (5.34) with A" # h evidently describe interference between scattering from
different modes of &. The diagonal terms of ¢, namely

G(h;k,v)Ec(h,h;k,v)=|V|‘1f f 6(x,x';k,v) exp [ih" (x —x)] dxda’  (5.36)
vVJ VvV

have some of the character of a scattering cross section, as we shall now see.
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To define a scattering cross section in these terms, consider a single transverse mode for
&(x,w) inside V, excited by light,

&(x,w) = |V|1E, exp [im(w) k," x]. (5.37)
The wave vector is determined in magnitude by (5.5) and the fact that P has wavenumber

mk,; its direction is arbitrary except that £, and k, are perpendicular. The intensity of the single
mode running wave in the medium is

I)(x,0) = cRe{m(w)} | V| 2|E 2 exp [ —7(w) k," x] /8T, (5.38)
in which T(w) = 2ky Im {m(w)} (5.39q)
is the extinction coeflicient. The expression (5.38) can be obtained from the Poynting theorem
by using a homogeneous Maxwell equation on the assumption that the relative magnetic

permeability of the fluid is unity. The extinction coefficient, which appears in (5.38), may be
obtained directly from the result (5.25) since (5.394) may be rewritten as

_ 4mk, m®—1
T=Re ) Im{ ype } (5.395)

We propose to obtain a differential scattering cross section per unit volume by normalizing
the energy flux of light scattered in direction k from an undamped field corresponding to (5.37),
against the intensity (5.38) of the same undamped single mode incident wave in the medium,
namely (5.38) without the exponential damping factor, thus

do _
"dQ2 ~ Re (m)

148 Trf f o(x,x;k,v) 'i(x’, x;mhkg, u) dxdx’. (5.40)
vy

The form (5.265) of T s used for scattering from an unpolarized incident wave. Notice that the
scattering cross section defined by (5.40) has a global rather than local character through the
integrations of x and x” over the entire region V. This feature is actually necessary because the
integral over x” is not independent of x and proves to depend in a non-trivial way on the position
x in relation to the boundary of V.

We shall show nevertheless that the total scattering cross section per unit volume obtained
from (5.40), no(w), is equal to the extinction coeflicient; that is

no(w) = 7(w), (5.41a)
or in more detail J—d.Q = 2k, Im {m(w)}. (5.41b)

This result expresses a local requirement of conservation of energy flow. But as we have seen
it is obtained only in a global sense.

The relation (5.41) is nevertheless an exact result derived by direct transformation of the
expression for no into the one for 7 by using the integral equations satisfied by the macroscopic
kernels. By integration over all directions of k we obtain from (5.40), by use of the
Bohr—Peierls—Placzek relation (2.14),

4Tk,

= o inyt.
no = ( |V| j f <AA12) Im{an} AA30> |01dx1 d (542)
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In (5.42), the imaginary part operator can be taken outside the integrations because the right
side of (5.42) is real and remains real if Im (F) is replaced by Re (F). To see this, perform a
complex conjugation, which for a scalar equals hermitian conjugation; then use the fact that
Re(F) and Im (F) are hermitian kernels.

We may now replace (AA)" by Al since the contribution of A}, vanishes because

{AAB> = 0. We then obtain

4T k . o~
no = m-)"‘—VT Im {Trfv fV (AT -Fou - AADRY -1 dx, ... dxo}. (5.43)

Now substitute the right side of the hermitian conjugate of (3.9),
A =tig+ [ | aapF igdr, s, (5.44)

for AlBT in (5.43). The second term of (5.44) results in a real integral that vanishes when the
imaginary part is taken. (Note that II'" is a hermitian kernel.) We are then left with

ank . . -
no = ’EE“(%)OTﬂ Im {Tr f ] f ) < f ) f Ty AR dx, dx3> Ty, dx, dxo}. (5.45)

From (3.9) we see that the quantity inside the angular brackets is just A3 —TIIi%; but the
contribution from I} is the imaginary part of a real quantity, which vanishes. We therefore
reach the result (5.41) by use of (5.25) and (5.395).

This proofof (5.41) is entirely independent of series representations of the macroscopic kernels
given in §5. It is straightforward to confirm the relation (5.42) by use of the result (3.42), which
is based on the series representations (3.17) and (3.34); one has only to remember that the
real and imaginary parts of the kernel A are each hermitian.

We emphasize that the differential scattering cross section, as defined by (5.40), is not
physically satisfactory because it proves to depend strongly on the geometry of the region V,
as we shall see in IT1. In contrast, the infegrated cross section o scarcely depends on the scattering
geometry, and the refractive index given by (5.25) fortunately also has this same property. The
result (5.41) is therefore physically meaningful despite the formal character of the differential
scattering cross section (5.40).

This paradoxical difference of status of the differential and total scattering cross sections can
be understood roughly as follows (this anticipates results to be given in I1I): an essentially local
differential scattering cross section can be defined for the scattering of an incoming wave in
the medium to an outgoing wave in the medium. But (5.40) describes scattering detected in
vacuum and it contains surface terms that account for the transformation of a scattered wave
in the medium into one in vacuum: the transformation can be interpreted in terms of refraction
and reflection of the scattered wave at the surface and ‘macroscopic’ multiple scattering (Hynne
1980, Hynne & Bullough 1982). Thus the effect of the surface terms of ¢ is to change the
angular distribution of the scattering, and this redistribution prevents a sensible definition of
a differential cross section directly from ¢. But since scattering in the medium in one direction
appears ultimately in some other direction, the total scattering detected in vacuum outside the
material system is not expected to differ from the total scattering as it emerges from local
scattering processes in the medium.

This explanation removes any paradox that might appear when the exact result (5.41) is
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282 F. HYNNE AND R. K. BULLOUGH

contrasted with the difficulties with the definition of a differential cross section through (5.40).
We have given the explanation in macroscopic terms, but it will be substantiated in ITI, where
we shall show that the macroscopic features are indeed contained in the microscopic theory.
There we shall reach a more acceptable definition of a differential scattering cross section.

The purpose of the preliminary discussion we have just given has been to obtain the result
(5.41), which shows that the unified theory of dielectric properties and scattering that we are
developing is internally consistent and firmly based in physics. Because of that internal
consistency reference to the refractive index theory will therefore help in the interpretation of
the scattering theory and vice versa. Paper 111, in particular, will exploit that relation.

6. THE OPTICAL EXTINCTION THEOREM

In this section we complete the solution of the set of equations (3.14) and (3.19) for & and
P. We have already shown that if these fields satisfy a wave equation of the form (5.11), then
the wavenumber mk, is determined by (5.25) for the refractive index. It remains to be shown
that solutions &, P of the proposed form actually exist. This means demonstrating that the
extinction theorem (5.19) can be satisfied for some solution P to the wave equation (5.11). And
we are also obliged to justify the neglect of possible non-local parts of the kernels A and T’,
which was assumed in the derivation.

We first consider (5.19), which is a peculiar set of inhomogeneous integral equations for P
and its normal derivative at the surface 0V of V, depending on the parameter x and with the
source E(x, w) depending on x. The set of equations has an infinity of solutions P, P, (P, denotes
the normal derivative of P) at the surface, from which P is obtained throughout I as the solution
to a well posed boundary value problem; thus a set of compatible boundary conditions for (5.11)
is selected.

The solution P depends, of course, on the geometry of the region V and on the incident field
E. We shall only consider a parallel-sided slab and an obliquely incident plane wave E. By
actually finding a solution P we demonstrate that, for this particular case at least, there exists
a solution to the wave equation (5.11), which satisfies the surface integral equations (5.19).
The problem has been treated by Darwin (1924); Hoek (1939) ; Bullough (1962); Born & Wolf
(1970); Lalor & Wolf (1972) and others. The extinction theorem has been placed in a broader
context by Sein (1969, 1970) and has been discussed by many authors (Agerwal et al. 1971;
Birman & Sein 1972; De Goede & Mazur 1972; Pattanayak & Wolf 1972; De Goede 1973;
Wolf 1973, 1976).

In the present context, the extinction theorem arises as one part of the set of equations that
determine the induced polarization. It appears here on the assumption that P(x, w) satisfies
(5.11) throughout the region V. Thus the question is whether there exists a function P(x, w)
satisfying both (5.11) and (5.16) including the condition (5.19) (the extinction theorem), and
hence whether a refractive index exists in the simple sense of continuum optics.

We chose a coordinate system with z-axis normal to the surface of the slab in such a way
that the wave vector k of the incident field

E(x,w) = Eexp (ik-x) (6.1)
has coordinates k= (k,0,k,), k=0, ky=n"k>0. (6.2)

Subscripts t and n refer to components that are tangential and normal with respect to the
surface, and = is a normal unit vector, n = (0, 0, 1).
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We take the sides of the slab at z =z~ and z = z* with z* > z~ and take the siab infinite
in all directions perpendicular to the z-axis. We shall ignore finite oscillatory contributions from
surface integrals at infinity, which represent the diffraction pattern of a surface at infinity. Such
contributions are unimportant to the present problem. The essential feature is that although
the system is infinite in volume, it has a well defined surface and is finite in all directions not
perpendicular to the slab axis.

To find a solution to (5.19), we evaluate the functional X(x; P) (equation (5.15)) when P
is a transverse plane wave of wave vector k,

P(x,0) = Pyexp (ik - x). (6.3)
Quite generally, we may write
X(x;P) = 2% (x; P)+ 2" (x; P) (6.4)
as a sum of contributions from the right and left surfaces. We then find for P, given by (6.3),
2 (x;P) = F (m*— 1)k 2(VV+ A2 U) [0 (V+ik) £ (x, k)] P,, (6.5)
in which {* is the surface integral

exp (iky|lx —x7|)
|x—x’

¢t (%, k) = f exp (ik-x’) d4’. (6.6)

+
=z
Integration over the polar angle first yields a single integral containing a Bessel function that
is known (see Erdelyi ef al. (1954), vol. I, formulae 1.13 (48) and 2.13 (47) and their errata
on p. xvi). The result is

Et(x, k) = 2mihVexp [i(k, x+ K, y) +hlz—2%|+k,2%], k < k,, (6.7a)
£ (x, k) = 2nhVexp [i(k, x +k,y) —hlz—zt|+ik, 2], & > k,, (6.7b)
in which ko= (R24+E2)%, b= |k2—F2h (6.8)

To satisfy (5.19) it is clearly necessary that £, < k,, and the fields £+ and X~ are then waves
with wave vectors (£, k,, = 4). The upper (lower) sign of +/ applies in the region to the right
(left) of the relevant surface. With proper choice of P, E may be eliminated in ¥ by £~ provided

k=Fk, = (k,0,k) (6.9a)
or k=k,= (k,0,—F). (6.95)
Here ky = (m2k2—k2)k (6.9¢)

since P is supposed to satisfy (5.11).
However, the right surface creates a wave £+ in V with wave vector

K = (k,0,—k,). 6.10
t n

But this can be avoided by using for P, a linear combination of two waves with the two wave
vectors (6.9),
P(x,w) = PV exp (ik, - x) + P® exp (ik," x) (6.11)

with an appropriate linear relation between the two vector amplitudes P® and P®.

19 Vol. 312. A
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Anticipating the proportionality between & and P (to be derived at (6.155) below), we note
here that (6.94) expresses the Snell law of refraction

k,=k or sinf=msind, (6.124)
with sinf = k,/|k|, sinf=F/|k| (6.12h)

for the transformation of E (wave vector k) into a wave of wave vector &, at the surface z = z~.
Below, 6, § always denote the acute angles between the normal to a surface and the wave vectors
of a pair of waves in vacuum and in the medium, respectively. We may think of these waves
as a pair of corresponding incident and transmitted waves, whether the incident wave is in
vacuum (as here) or in the medium. Similarly, (6.94, b) express the law of reflection

nk =—nk, (6.12¢)
at either of the two surfaces z = z*.
We may now summarize the situation. The field E must be eliminated by 2~ in V and hence
everywhere to the right of the surface z = z~. Similarly, 2* must vanish in V and hence
everywhere to the left of the surface z = z*:

Ex,0)+2 (x;P) =0, z>z, (6.13a)
2t (x; P) =0, z<z'. (6.13b)
Plainly, we also have Px,w)=0, z<z  or z>z (6.13¢)

Hence, by (5.14) the average field & may be written as a sum of three parts
E(x,0) = [E(x,0)+ 27 (x; P)]+ 2% (x; P)+ 4n(m?— 1) P(x, w), (6.14)

of which precisely one is non-vanishing in either of the three regions bounded by the surfaces:

Ex,w)+2 (x;P), z<z, (6.154a)

4n _ N
E(x,w) = mP(x,a)), z-<z<zt (6.15b)
Xt (x; P), z>2z". (6.15¢)

Figure 1 displays the relations (6.12) and (6.15) and the various wave vectors and associated
fields.

The relations (6.134, b) again express the extinction theorem of Ewald (1912, 1916) and
Oseen (1915): the polarization induced in a uniform material dielectric by a field E(x, w) of
wavenumber k is such that the functional 2(x; P) of P and its normal derivative at the surface
equals — E(x, ). The functional exactly compensates the incident field throughout V. It creates
no other field of wavenumber £, inside V but gives rise to reflected and transmitted waves
outside V.

We now find vector amplitudes PM, P® such that P (equation (6.11)) satisfies equations
(6.13). For z < z* we find from (6.135)

~

(k,—k,) exp (ik, z*) (U—K'k)- PO —(k +k,) exp (—ik, z*) (U—K'E)-P® =0. (6.16)

For a wave with wave vector in the direction h, we choose an orthogonal basis for polarization

A A A

vectors w(h),u (h) in such a way that u,(h) is always along the positive y-axis and u(h),
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u l(’:), and h form a right-handed system. The subscripts || and L now refer to vectors in the
plane of incidence and vectors perpendicular to that plane respectively: (6.16) splits into two
independent equations for the two types of components and we find the linear relations

Pﬁ’z)J_ = R”,J_exp ( ) ﬁ (6.17&)

. . k —k sin (9 0)
hich R ="—"2"=-— ~ 6.175
e SRR sn(0+0) (6.174)
R = __Rlcos (6+6) _ tan (6—06) (6.170)

cos (6—6)  tan 6+6)°

The relation (6.174) agrees with macroscopic optics and the coefficients (6.175, ¢) have the
form of the appropriate Fresnel reflection coefficients (see, for example, Born & Wolf 1970 or
Jackson 1975).

E+Y =0,z>z"
z " PZ%
N7
E /’P1 z z
i \/
A A

E=E+¥ E= S5 P &=z
z<z” 2>zt
Z'=0, z<z+ Zr<z<z’
2=z z=z"

Ficure 1. Wave vectors and fields associated with the extinction theorem for a parallel-sided slab
and a plane incident wave.

From (6.13a), we similarly find the equation

4T /c+k
Tmi—1 2k,

S exp [i(k,—k,) 271 (U kk)-pow

an k,—k

—_ n . T _ —AA . 2 _
w1 or OPLitkath) 2] (U—Fkk)-P® =0 (6.18)

By splitting into independent equations for components in the plane of incidence and
perpendicular to that plane and by using the result (6.17) we then find linear relations fixing
the amplitudes P{") in relation to the amplitudes E; , of the external field,

o1 Ty explithy—Fky) 2] }
n =" { 1L EXP 1%, — &y E .. 6.19
H AL ="5 1—R} exp [i2k, (2" —2z7)] " o
ere, 7 2k _2cosOsind (6.195)
ok, sin(0+6) |
T, = T, /cos (0—0), (6.19¢)

19-2
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286 F. HYNNE AND R. K. BULLOUGH

have the form of Fresnel transmission coefficients for waves passing from vacuum into the
medium.

Comparison of (6.156) and (6.194) shows that the term in curly brackets in (6.194) can be
identified with the amplitudes &{", of the mode of the electric field in the medium with wave
vector kj,

g, = Toaexplitky =) 7]
DL R exp[i2k, (2t —27)]

E .. (6.20)

The amplitudes of the other mode (of wave vector k), & {?,, are obviously related to &f", by
a relation of the form (6.17a). The results (6.17), (6.19), and (6.20) are in complete agreement
with macroscopic optics: they show that the slab acts as a Fabry-Perot interferometer in the
usual way.

It is easy to confirm also that 2 (x; P) agree with the expressions of macroscopic optics for
the transmitted wave (&% for z > z*) and for the reflected wave (2~ for z < z7). The wave
vectors are right, and we find for the amplitudes

1 o R ) N
I = _771 exp [i(k, —k,) z*] é"ﬁﬂ——ﬁr—i exp [i(k, —k,) 2] €%, (6.21)

or by use of the equivalent of (6.17a)

Ity = T exp ik, —k,) 241 61, (6.220)
in which ~
oy =1 Ma kg (6.225)

L
| T“,J_ k

n

is a transmission coefficient for waves passing the surface from the medium into the vacuum
outside V. Hence, 2'* represents the transmitted wave for z > z*.
For the amplitudes 2} | we find

R .z 1 L N
Z'""_,_ =— ﬂl’iexp ik, +£p) z7] 5|(|})L+Tu—lexp [—i(k,+£k,)z7] é"l(lzl (6.23)
By using (6.18) in the form

1 L _ R 7 ~
E”y_,_-—-ﬁ-l—exp [i(k,—k,) z ]é"l(lf)l+~7—l"b-j‘_exp[—1(kn+kn)z 16 =0, (6.24)

we may eliminate do@l(,l)_,_ between (6.23) and (6.24). We then find, by use of (6.225),

I = TpWexpli(k,—ky) 271 6P — Ry L exp[i2k, 271 E| . (6.25)
Thus, for z < z7, X~ (x; P) is a sum of two contributions that can be interpreted as the wave
& exp (ik," x) transmitted through the surface z = z~ and the wave E(x, w) reflected in the
surface z =z". Note that R , applies to internal reflections and —R; ;| is therefore the
appropriate reflection coeflicient here.

Let us review the argument that led to these results. The coupled equations for the induced
polarization break into two equations for terms satisfying either of two distinct wave equations.
One equation is homogeneous in P and is independent of the geometry of the system (on the
assumption that the non-local parts of A and I' are negligible); it fixes the wavenumber of P
to mk,. The other equation has E as a source and depends strongly on the geometry; it
guarantees that no mode of wavenumber £, propagates in the medium, and it fixes the
amplitudes of the various modes of wavenumber mk,.
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The argument through the assumption (5.11) breaks down if A and I' have non-negligible
non-local parts, because the coupled equations then do not split. In the following discussion
we shall work in terms of A, and we shall show that it has a non-local part that is small, but
not obviously negligible: it appears at third and all higher orders in na of the series expansion
of A. By generalization from the third order term (which we analyse in detail), we indicate
how it is possible to carry the argument through in terms of a modified condition (5.11) and
yet define a unique refractive index.

Consider the representation (3.17) of A; this is formally a power series in nat. The coefficients
are tensor kernels given as products of propagators F integrated with a correlation function
H as a weight. To isolate possible non-local parts of A, it is convenient to express the H functions
in terms of (generalized) Ursell functions, defined by the recurrence relation (4.124); the first
few functions are

H,, = Uy,
Hypo = Uszo+ Uses (6.26)
Hips0 = UyggoF Ui U+ Uyg Upg + Uygg+ Uy + Uy

As previously noted the Ursell functions have the useful cluster property that they tend
rapidly to zero whenever the distance between any two of their variables tends to infinity. The
two first terms of the expansion (3.17) are therefore short-range functions of ¥, —x, and hence
local in the sense used here. Equation (6.26) splits the third order term in two. The term in
U,,, is local because all the variables x,, x, and x, are ‘covered’ by the Ursell function. The
integration with respect to x, can then be extended to all space and the result depends only
on x, —x,; furthermore, the term is evidently short range.

The part of the third order contribution to A from the term U,, of H,,, (equation (6.26))
is

(120 Uyl ) | Flomy230) 05 0) s (6.27)
14

Here the integration cannot be extended to all space because F behaves asymptotically as given
by (2.35) namely
F(x,x";0) ~ kZ (U—##) exp (iky1) /1, kor> 1 (6.28)

(in the notation defined below (2.2¢)), so the integral over all space diverges.
Because of the factor U,, we need only consider the case in which |x, —x/| is not large
compared to a correlation length /, which we may define as

2= J'|x—x’|2 Uy(x,x") dx’/JU2(x, x’) dx’. (6.29)

Apart from finitely oscillating contributions at infinity, which we ignore, the integral (6.27)
converges for the infinite parallel-sided slab, and for x, well inside the slab we find

J'V F(x,, x5;0) F(x,, %05 0) dx, = 2n[F(x, x5 0) + (2, —x9) "V, F(x,, %45 0) ]

T, fexp [12ky(z, —27)] | exp [i2ky (2" —2z,)]
+§k0{ ko(zy—27) ko(zt—2z,) }

X [1+ OKG [y = x|") ]+ O((kg2(2,—27) %) + O(kg*(z" —2,) 7). (6.30)
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Equation (6.30) has been pieced together from a surface independent part obtained by all-space
Fourier transformation, and a surface dependent part obtained by evaluation of the relevant
integrals. The result has been checked by direct calculation of the imaginary part of the
complete integral. The surface independent part is the term in F, which depends on x, and
x, only through the difference x, —x,. The rest of (6.30) is surface dependent. It depends on
the distances of x, to the left and right surfaces of the slab, and hence it depends on x, and
x, separately (z, denotes the coordinate of x, along the slab axis).

The surface dependent part of the integral (6.30) is shown as the leading term of an expansion
in the reciprocal distances to the surfaces. The contribution to A of the surface dependent part
of the term (6.27) (which already may be relatively small on account of the factor (nx)?) is
therefore completely negligible provided the point x, is many wavelengths away from any part
of the surface. When this condition is met the term (6.27) is indeed local since the Ursell function
that multiplies the integral ensures the short range.

Generalization from this observation suggests that the non-local part of A(x,,x,;®) is
negligible provided x, is well inside the material system. We shall assume the validity of this
generalization with a minor amendment. We defined ‘locality’ with reference to a correlation
length /; but we must admit also small contributions to A, which are ‘local’ 6nly with reference
to a wavelength. This is the case with the term at fourth order in net arising from the second
term on the right side of the last equation of (6.26), namely

(noc)‘lfv fv F., F, F, U, Uydx,dx,. (6.31)

This term is not short range in the original sense because the points x, and %, are not connected
by Ursell functions. Nevertheless, a subsequent integration with respect to x, to obtain
A (mky, ) converges through the photon propagators, since the term (6.31) is approximately

(na)t(kp kg T)2(UJ —#7) k§ exp (13ky 1) /13, kor > 1, (6.32)

for separations r = |x, —x,| large compared to a wavelength 2n ;1. In (6.32) we have used the
fact that the integral of the two-body generalized Ursell function U,, is 7'k, kg T for the grand
ensemble; . is the isothermal compressibility. (The grand ensemble is chosen only for
simplicity; but it is interesting to note that precise choice of statistical ensemble may be
important for the particular term (6.31) because of the combination of phase factors and Ursell
functions. However, we shall not pursue this question.)

Even though the non-local part of A(x, x; w) is negligible when x is well inside the material
system, it is not obvious that a non-vanishing contribution near the surface would not damage
the argument in terms of the extinction theorem. This is because that argument rests on a global
property of P, namely the satisfaction of the wave equation (5.11) in the entire region V. We
believe, however, that the situation is the following.

The average polarization can be split into a ‘bulk part’ P,, which satisfies the wave equation
(5.11) throughout V, and a ‘surface part’ P, which vanishes well inside the system;

P(x,0) = P, (x,0) + P,(x,). (6.33)

For simplicity we assume that P, is transverse. We then obtain for the average electric field

E(x,0) =E(x,w)+E(x;Pb)+4n(m2-—1)‘1Pb(x,w)+J F(x,x";0) P/(x',w)dx’. (6.34)
14
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The original condition (5.19), which states that the field E(x, w) + Z(x; P) vanishes identically
(for all x in V) is now replaced by the asymptotic relation

E(x,w)+X(x; P,) +f F(x,x";0) Py(x',0)dx’ ~ 0 (6.35)
v

valid for & well inside V. When this condition on x is fulfilled, we expect the integral in P, to
satisfy a wave equation of the form (5.9) rather than vanish. However, it satisfies neither (5.9)
nor (5.11) when x is close to the surface; hence, & also consists of bulk and surface parts. In
the simple case of a parallel-sided slab, equations (6.134) and (6.134) now include the
additional integral of P, from regions near the right and left surfaces respectively, and P,
similarly modifies the transmitted and reflected fields, respectively.

We have now completed the solution of the set of equations (3.1) (or the equivalent set (3.14),
(3.19)), which was initiated in §5. The most important conclusion is that (3.1) has indeed a
solution P(x, ) satisfying the wave equation (5.11) for x well inside the material medium. Thus
(3.1) defines a refractive index. This means that all the expressions for the optical parameters
derived in §5 have now been substantiated. In particular we have demonstrated that the
refractive index is given by (5.25), and that this expression is essentially independent of the
geometry of the region V.

7. CONCLUSION

We have solved the problem of finding the response of a molecular fluid to light. The
molecular system is finite and the electromagnetic field is incident upon the system from the
outside. We have calculated the average polarization, P, the average electric field, &, inside
and outside the system, and the flux of scattered light, J, induced in response to the external
field E.

The theory is completely general; but we have also treated one particular choice of geometry
in detail: we have exhibited the polarization and the field induced in a molecular fluid
contained in a parallel-sided slab in response to a plane incident wave E. With E given by (6.1),
(6.2) we found for the slab z~ < z < z* that the polarization is a sum of two modes (equation
(6.11)) with amplitudes fixed by the external field as given by (6.17) and (6.19). Inside the
medium the field & similarly consists of two modes with amplitudes determined by (6.20) and
a relation similar to (6.17). The field outside the medium is given by (6.154, ¢) with (6.22)
and (6.25). These fields agree with macroscopic optics. However, they apply only for points
well away from the surface. In addition there are small contributions to both polarization and
field at points near the surface, as we have demonstrated through analysis of one surface term,
equation (6.27).

The theory is nowhere phenomenological and the transmission and reflection coefficients T
and R in the relations between the amplitudes are derived through the constraint of the
extinction theorem: this condition is one of two equations into which the response equation
splits; the other equation fixes the parameter m, the refractive index. The result for m is the
expression (5.25) in terms of the susceptibility kernel A, which itself is given by the unscreened
expansion (3.17), (3.18), or alternatively by the screened expansion (4.10), (4.11).

Actually, A determines wavenumber and frequency dependent dielectric constants (5.8),
while the refractive index is initially obtained through the argument involving the extinction
theorem in the different form (5.22) in terms of a kernel I', equations (3.26), (3.27). But we
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have established the relation (3.30) between the kernels A and T', and this allows us to derive
the identity (5.27) between the frequency dependent dielectric constant and the refractive
index. As a consequence we need only consider the refractive index and we may express it in
terms of the susceptibility kernel, as in (5.25).

The flux of scattered light, collected at a distant detector outside the molecular system, is
found as the quadratic form (3.32) in the average electromagnetic field, &, which itself is
determined by the external field (for the special geometry by (6.20) etc., as we have just
mentioned). So J is obtained as the response to the external field E. The kernel of the quadratic
form, the scattering kernel @, is obtained in the form of series expansions to all orders, the
unscreened expansion (3.34) with the definition (3.35), and the screened expansion (4.25) with
the definition (4.24). The remarkable fact is that these expansions are governed by the same
correlation functions as the corresponding expansions of the susceptibility kernel, namely the
H and Y functions, respectively. These functions are defined in (3.18) and (4.114), respectively,
and the first few functions are displayed in (3.28) and (4.115). The definitions are in terms
of the generalized distribution functions G and Ursell functions U defined in (3.14) and (4.12a)
and displayed in (3.15) and (4.125).

Indeed, the similarity between the susceptibility kernel A and the scattering kernel & is
striking and applies in either unscreened or screened formulations. Thus a term with p
propagators in the expansion of A corresponds to a sum of p terms with p propagators in the
expansion of ¢. Each term contains a product of one special propagator, which we have called
a ‘radiator’, together with p—1 ordinary propagators, and the sum is over all positions of the
radiator in the chain of propagators; see (3.34) with (3.35) in the unscreened formulation and
(4.25) with (4.24) in the screened one. Every term in the sum of p terms contains the same
correlation function f or ¥ (which is identical with the one that appears in the corresponding
term in the expansion of A, as we have already said).

The radiators are defined by (2.12) (unscreened) and (4.17) (screened), and they qualify
as ‘propagators’ not only because they formally appear as such in &, but also because
Bohr—Peierls—Placzek relations connect $ with F and & with & ; (2.14) and (4.26). We view
the highly uniform structure of ¢ and A (expressed in condensed form in the relation (3.41))
as an important feature of the present formulation. The physically important Bohr—Peierls—
Placzek relation (3.42) between the kernels ¢ and A is an immediate consequence, and this
again implies the conservation relation (5.41) between the total scattering cross section and
the extinction coeflicient (although (5.41) was actually derived directly from the integral
equations of §3).

The refractive index was transformed to a series (5.32), which generalizes the Lorentz—Lorenz
relation; but beyond this we did not develop the theory of the refractive index. That
development will be the subject of the second paper in this series. From (5.32) with the
unscreened expansion (3.17) of the susceptibility kernel A, we shall compute the correction
to the Lorentz—Lorenz relation valid at low densities. We shall use the screened expansion
(4.10) as basis for a discussion of the physical meaning of the corrections to the Lorentz—Lorenz
relation, and for a comparison of two models of the local field. In this discussion we use the
formulation in terms of generalized correlation functions with the definition (2.26) and the
practice of concealing Lorentz terms as contributions from vanishingly small spheres through
the definition (3.4). Through the formulation in these terms a generalization of the radiation
reaction (2.26) to an Onsager type reaction field suggests itself; and as a result the complex
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polarizability (2.7) is generalized to a Béttcher type effective polarizability for a molecule in
the many-body system. Thus, the alternative formulations and the several technical devices
introduced in this paper will come into practical use in due course.

For the scattering of light, we calculated the flux of scattering in a given direction with a
given polarization. We also found an expression for the total scattering cross section, which
we used for the proof of the relation (5.41) as a sign of the internal consistency of the unified
theory. But we were unable, at this stage of the development, to define a differential scattering
cross section, and we indicated the reasons for this paradox. There remains a number of
problems, primarily associated with the effect of the surface, which require a separate paper
for their solution. The third and last paper in this series will deal with all of these problems.

Again, the solution of these difficult problems depends on some rather technical devices
introduced in this paper, in this case the screened radiators & and &”. It will turn out in III
that the weight field ¢ (equation (4.19)) contained in & (equation (4.20)) plays much the
same role for the scattered wave as & does for the incoming wave; and from the form of the
scattering in terms of the weight field we shall demonstrate that the theory describes refraction
and reflection of the scattered light. We shall also see that the subtle difference between the
radiators & and &’ contains the key to a complete solution of the intriguing problem of
macroscopic multiple scattering: the solution is based on the screened expansion (4.25) of the
scattering kernel. Working from the alternative expansion (4.36) we shall compute the
scattering at low densities. We shall also analyse the Einstein (1910) light scattering equation:
we simply calculate the expressions on each side of his formula from the microscopic result (5.25)
with (3.17) and compare them.

So the forthcoming papers II and III will provide the elaboration, the computations, and
the comparisons that this paper largely lacks. We have been concerned with presenting the
foundation of the theory, establishing its internal consistency, and obtaining explicit expressions
for the basic objects of the theory, the susceptibility kernel, A, the scattering kernel, ¢, and
various propagators. This work will lighten the papers IT and III so that they may concentrate
on physical ideas.
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